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ABSTRACT

A comprehensive scheme is described for designing control systems

in the presence of uncertainties about initial plant state and plant

parameters, disturbance inputs, and measurement noises. The method is

based upon treating these random effects as perturbations on a nominal

trajectory corresponding to plant operation without the random effects

and with a nominal control as input. As a first approximation, the deter-

ministic optimum is used for the nominal control, with optimal linearized

estimation and control of the plant about the nominal trajectory. Next,

the sensitivity of system performance to the random effects is computed;

if this sensitivity is too great, then improved performance may be obtained

by use of adaptive control (i.e., estimation of the uncertain parameters)

and modification of the nominal control. If adaptive control is not used,

reduced sensitivity can also be obtained by modifying the linear estima-

tion and control in addition to the nominal control. Performance compu-

tations are accurate to terms of second degree in the perturbations.

Optimization of the measurement system from two points of view is

considered: First, a method is developed for the optimum choice of in-

struments which trades off increased cost against improved performance.

Second, the optimum measurement subsystem control policy is developed

for situations in which the measurement system may be operated in more

than one mode.
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I INTRODUCTION

This final report summarizes the work performed on Contract

NAS 2-3476 from 17 March, 1966 to 17 April, 1967. Three quarterly

reports l&3* containing partial results obtained in the course of the

study have been published previously.

Contract NAS 2-3476 is a logical extension of work performed by the

same authors from November 1964 to September 1967 under Contract NAS2-2457

entitled "Information Bequirements for Guidance and Control Systems, ''4'5,6

A. Objectives

The objective of Contract NAS 2-2457 was to relate the performance

of a guidance or control system to the information-handling character-

istics of its key components, notably the measurement subsystem. It was

shown that the desired relations could be derived within the mathematical

framework of combined optimum control and estimation theory. 5,6

The objective of Contract NAS 2-3476 has been to proceed beyond the

analysis of the effects of imperfect information upon system performance

and to synthesize systems in which the degrading effect of imperfect in-

formation is minimized.

Specifically, the following statement of objectives was agreed upon:

(1)

(2)

To provide NASA with practical approaches toward the design

and evaluation of systems in which optimum, or near optimum,

utilization of information is necessary.

To further the state of the art of the information and

control sciences by providing mathematical relations

between the relevant variables (such as performance,

measurement subsystem outputs, control subsystem out-

puts, etc.) under general circumstances; by interpret-
ing the physical significance of these relations; and

by describing special cases that allow practical appli-
cation and implementation in the near future.

* References are listed at the end of the report.



B. Summary of the Results Obtained

In the course of Contract NAS 2-3476, the results discussed below

were obtained:

1. Establishment of a Design Methodology

A methodology for designing guidance and control systems in the

presence of uncertainty has been established and is described in Sec. II.

The procedure starts with an optimum deterministic design, in which the

existence of uncertainty is at first ignored. Thereafter, the sensitivity

of the performance of this deterministic design with respect to the un-

certainties is established. Finally, the optimum control signal origi-

nally found for the deterministic design is corrected to minimize tile

degradation of performance caused by the uncertainties. Several types

of corrections, ranging from simple closed-loop control to the incorpora-

tion of the dual and stochastic effects are discussed.

2. l)evelopment of Sensitivity Equations

Sensitivity equations have been developed relating system performance

to the various uncertainties, notably plant noise, measurement noise, and

inaccurat, ely known plant parameters. It has been shown in the course of

the study that the desired sensitivity relations can tie obtained under

certain assumptions by second-order Taylor-series expansion of the

tlamilton-.lacobi equation. With this sensitivity information, the degrading

effect upon performance of noise and parameter uncertainty can be analyzed

methodically. These relations not only permit a quantitative analysis of

the effects of uncertainty but, in addition, suggest synthesis procedures

for designing systems in which the degrading effect of uncertainty is mini-

mized, that is, systems that utilize the available information optimally.

The analysis and synthesis procedures derived from second-order sensitiv-

ity theory are presented in Sec. 11I and a very versatile computer program

implementing these procedures is discussed in Part 3 of Appendix B.

3. l)evelopment of a Methodology for the Design of Adaptive

Systems

The purpose of adaptive systems is to reduce the degrading effect

of parameter uncertainty upon system performance. This is customarily

accomplished by first estimating the imperfectly known parameters and

thereafter changing the law of control to account for the present best.

2



estimate of these uncertain parameters. Using the sensitivity relations

established in the course of the contract, it is straightforward to ob-

tain an upper bound for the performance improvement made possible by an

adaptive design. If this improvement is sufficient to justify the ad-

ditional complexity of an adaptive system, then the synthesis procedures

discussed in Part 2 above can be applied to achieve an optimum adaptive

design. This approach toward adaptive system design is discussed in

Sec. III. In the course of Contract NAS 2-245?, it was shown that the

"dual control effect" arises in systems with imperfect state information.

This effect dictates that the optimal control should accomplish the dual

purpose of forcing the desired plant motion and of acquiring improved

state information. The adaptive design procedure derived in Sec. III

displays this dual control effect by shifting the nominal trajectory

away from the deterministic optimum trajectory.

4. Development of an Optimum Design Procedure

for Instrumentation Systems

The control system designer usually is not only responsible for the

design of the law of control, but also for the selection and specification

of the instrumentation subsystem. Ideally, he would like to measure every

state variable with perfect accuracy; practically, this is rarely possible

because of the excessive cost (or bulk) of the resulting instrumentation

system. He must therefore relax the specifications of the instrumentation

system until they fit his budget. How this can be done with minimum de-

gradation in system performance is discussed in Sec. IV.

5. Development of Systems with Optimum Control

of the Instrumentation Subsystem

The possibility of improving system performance by controlling the

instrumentation subsystem as well as the plant Was first explored by the

authors under Contract NAS 12-59 for NASA Electronics Research Center,

and was further developed under the present contract. This work

constitutes the analytical basis for various proposed instrumentation

systems with a built-in capability for adapting their sensors (dynamic

range, quantization grain, etc.) to the measured data. A paper entitled

"Optimum Control of Measurement Systems" has been accepted for presenta-

tion at the 1967 Joint Automatic Control Conference and publication in

the Transactions on Automatic Control and is reproduced in Sec. V.



6. Study of Potential Applications

Contracts NAS 2-2457 and NAS 2-3476 were not aimed at any specific

applications, and the results obtained are perfectly general. These re*

suits furthermore have reached a sufficient degree of perfection to be

applicable to practical control and guidance problems. Generally speaking,

they first allow the designer to analyze the performance degradation

caused by uncertainty and next allow him to design a control system

capable of coping in the best possible manner with these uncertainties.

In order to find specific applications for these techniques, presently

used and projected electronic systems for commercial and VSTOL aircraft

were reviewed. The general results of this study are contained in Sec. V[.

Although the techniques developed in tile course of the study were

aimed primarily at systems under complete computer control, it is believed

that the fundamental concepts used can be extended to certain design

features of control systems containing man in tile loop. [n particular,

these techniques provide an estimate of the performance achievable when

the huinan operator is given incomplete information; the logical next step

in the procedure determines which information must be made available if a

prescribed level of performance is to be achieved and thus specifies tile

nature and characteristics of the display systems required.

A preliminary discussion on how these techniques might be used to

design a human interface is contained in Sec. VI.

C. Unsolved Problems

The objectives pursued in Contracts NAS 2-2457 and NAS 2-3476 were

to establish analysis and synthesis procedures for guidance and control

systems required to operate in the presence of uncertainty. Generally

speaking, these objectives were achieved in a practically acceptable

manner. The approach requires that the deviations from the nominal caused

by uncertainty be sufficiently small and that the appropriate functions

can, in fact, be expanded into a Taylor series. These conditions appear

to be satisfied by a majority of guidance and control systems operating

on physical processes, ttard saturation of the control can be included

in the theory by use of penalty functions.

4



To determine those classes of problems that cannot be handled, we

must look for large perturbations and mathematical models that do not

allow Taylor series expansions. Large perturbations arise, notably in

conjunction with component failures, whereas mathematical models that can-

not be linearized are characteristic of discrete-state/discrete-control

systems. These models are not frequently encountered in the control of

physical processes, but are very common in operations research and the

management sciences.

With the exceptions quoted above, the methods developed apply to

numerous practical control problems and provide most of the answers de-

sired by the control engineers, except those pertaining to the imple-

mentation of the data-processing subsystem or controller.



II A METHODOLOGY FOR DESIGNING GUIDANCE AND CONTROL SYSTEMS

REQUIRED TO OPERATE IN THE PRESENCE OF UNCERTAINTY

A. Introduction

In Sec. I, we listed various analytical techniques that were devel-

oped in the course of Contracts NAS 2-2457 and NAS 2-3476 to assist the

designer of control and guidance systems required to operate in the

presence of uncertainty. In this section, we establish a methodology,

based on these techniques, to guide the designer of such systems through

a practical step-by-step procedure. This methodology is not the only pos-

sible approach; however, it constitutes a reasonable compromise between

excessive complexity and unreal simplicity. Since the rigorous treatment

of systems perturbed by random influcnces naturally leads to a combined

optimization problem, the solution of which is difficult or impossible,

it is easy for the designer to get bogged down by excessive complexity.

The over simplified approach neglects these random influences altogether

to solve a deterministic problem; the answers obtained in this manner can

easily be meaningless, depending upon the effect ot' the random influences.

The methodology given below also constitutes a reasonable compromise

in terms of the classes of systems it covers: Inclusion of all possible

classes of systems (e.g., finite state systems, systems with multiple con-

trollers, etc.) would make the treatment, of the vast majority of continuous

guidance and control systems unnecessarily cumbersome.

B. System Description and Ground Rules

Since we are concerned with the tasks assigned to the control engineer

and not with those assigned to the administrator or the mechanical engineer,

we assume that

(1) The performance function (or, equivalently, the cost

function) has been specified by the project administrator

(2) The plant to be controlled has already been designed by

the mechanical, electrical, chemical, etc., engineer.



If the control system is not capable of achieving the prescribed per-
formance with the given plant, a new overall design iteration may need to
be carried out.

To summarize, we assumethen that the control system designer has
been given the cost function J, which in the general variational case takes

on the customary form

-T
f

J = ] l(x,u,t)dt + *(xr, r) , (II-1)
) o

subject to constraining equations of motion of tile form

x = f(x,u,w,p,t) (11-2)

where

x = state vector

u = control or decision vector

w = perturbation vector

p = parameter

[O,T] = optimization interval.

Ill addition, there may be inequality constraints on x and u o|' the form

x e X u • U (II-3)

Although the variational optimization problem represented by

Eqs. ([I-1) and (II-2) describes the majority of control and guidance

problems in a very satisfactory manner, the static optimization problem

discussed in greater detail in Appendix A is also frequently encountered.

Since this is a simpler problem and yet displays most of tile effects of

interest in our discussion, it will be used liberally for illustrative

purposes. This problem is briefly formulated as follows: Given the cost

function

J = F(x,u) , (1I-4)

it is desired to minimize ,1 subject to a set of equality constraints of

the form

g(x,u,w,p) = 0 , (11-5)



and a possible set of inequality constraints of the form

u e U and x e X (II-6)

In Eq. (II-4) the vector u represents the independent (control) variabIes

and the vector x represents the dependent variables; thus the dimension of

g is taken equal to the dimension of x. As before, w and p represent per-

turbation and parameter vectors.

For both the variational and static problem formulation, the task

assigned to the control engineer consists of minimizing the cost function

subject to the plant constraints (II-2) and (II-4), respectively, but also

subject to additional practical constraints relating to the complexity of

the proposed control system, the major constituents of which are the instru-

mentation subsystem and the data processing subsystem (controller).

To complete the description of the plant, it remains necessary to

discuss the significance of the variables x, u, p and w. The dependent

or state variables x are not necessarily obvious and their selection is

influenced by the accuracy requirements of the model. For example, the

dynamic effects characterized by a short time-constant compared to the

dominant time-constant of the plant may be neglected, in which case the

dimension of the state vector is reduced, but the optimum control u(t)

corresponding to this simplified model may not be adequate for the real

plant. Similarly, the control vector u is not always fixed a priori;

for convenience, the designer may wish to maintain some of the input

signals to the plant at a constant level and treat them as part of the

parameter vector p; alternatively, he may connect these inputs to the

controller, in which case they become part of the vector u. The vectors

p and w enter in an identical manner into Eqs. (II-2) and (II-4) and it

is convenient (but certainly not necessary) to differentiate between them.

In what follows, p is used to denote constant parameters of which the

designer's knowledge is uncertain. The vector w, on the other hand,

denotes random perturbations, the future variation of which cannot be

predicted with certainty. To summarize, p is taken to be a random

variable; w is a random process.

For the case of the variational problem represented by Eqs. (II-1)

and (II-2), one additional random variable may need to be considered,

namely the initial state x 0. The sum total of the uncertainties en-

countered so far is hence characterized by the variables Xo, w, and p.



If tile variables x0, w, and p were perfectly known, the stated opti-

mization problem could be solved by well-known deterministic techniques

and a control u(t) minimizing the cost J could be found. If tile same

control u(t) were applied in the presence of uncertainty (i.e., if x0, w,

and p are random variables) the resulting cost would also be a random

variable. In this situation, it is customary to minimize the expected

cost E{J} by finding tile appropriate control u. This implies that a

stochastic optimization problem must be solved, which in general is very

difficult. The approach we take in Part C below deliberately avoids the

general stochastic optimization problem. Broadly speaking, we first ask

the question "What is the degrading effect upon performance of these un-

certainties?" If the degrading effect is acceptably small, the design is

satisfactory; if not, compensation of the control signal is introduced to

reduce the degrading effects of uncertainty. To derive these compensatory

signals, the well-known and easy to implement results of linear control

theory are liberally used.

C. beterministic Phase

1. l)iscussion

tlaving tentatively decided on a reasonable model, the second step

of the methodology consists of optimizing this model without considering

any uncertainties x0, p, or w. The resulting deterministic optimization

problem is stated as follows:

T

rain fo l(x,u, t)dt + _(xr, T)
u(t) e l!

subject to the differential equation constraints

(ll-7a)

x = f(x,u,p,w,t) ; x] t=0 = x0 ' (ll-aa)

where the random variables Xo, p, and w have been replaced by their means

Xo, p, arid w. The minimum cost obtained as a result of this deterministic

optimization is denoted by .1o; this cost is clearly a function of x 0, p,

aria w,

I)epending on the nature of the optimization procedures chosen to carry

out this step, the optimum deterministic control u ° is ot_t. ained either as

a function of time u"(t)--a control schedule--or as a function of state and

10



time u°(x, t)--a control law. Gradient procedures naturally lead to con-

trol schedules, whereas dynamic programming naturally leads to control

laws.

If there were no uncertainties, i.e., if the variables Xo, p, and w

were exactly equal to the means Xo, p, and w assumed for the optimization,

the closed- and open-loop configurations would be completely equivalent.

Since in actuality these uncertainties exist, the performance obtainable

with both configurations may be quite different. The deviation of per-

formance from jo as a result of these uncertainties is most conveniently

assessed by means of sensitivity theory 4 for those problems where the

required linearizations are valid. With the help of sensitivity theory,

closed-loop performance can be calculated readily, even if the result of

the deterministic optimization is a control schedule. In view of this,

we assume that an open-loop solution u°(t) of the stated deterministic

optimization problem has been obtained.

For the static case, the optimization problem is stated as

min F(x, u) , (II-?b)
u

subject to the algebraic constraints

g(x, u, p, w) = 0 , (II-8b)

where again the uncertainties p and w are replaced by their means p and

w. The resulting minimum deterministic cost jo is a function of p and

w ; the optimum control u ° is a number which also depends on p and w.

To complete the deterministic phase, it is necessary to establish

the sensitivity properties of jo with respect to the uncertainties x
0'

p and w. This can be accomplished either by simulation or by analytical

procedures, notably those developed in Bef. 4 and repeated in Sec. III

of this report.

The most frequently used analytical approach to determine the sen-

sitivity properties is to perform a Taylor series expansion of the cost

d ° with respect to the variables x, u, xo, p, and w about the nominal

solution defined by Xo, u °, p, and w. The constraining equations (II-2)

and (II-4) prescribe the variation Ax of the dependent (state) variable

11



x resulting from any variation Au, Ax0, Yp, and Aw of the remaining

problem variables. To summarize, the variation in cost AJ--a positive

or negative scalar--can be expressed by means of a Taylor series expan-

sion in terms of the variations Ax and Au, which in turn are constrained

by the equations of motion (11-2) or {I1-4).

The importance of carrying out the Taylor series expansion to suf-

ficiently high order has been pointed out in Ref. 4. For tile purposes

of this discussion, it suffices to make tile following comments:

(1) If only the first-order terms of tile Taylor series

expansion are retained, i.e., when AJ is expressed

linearly in terms of Ax and Au, theu tile degrading

or beneficial effects of actual variations AXo, Ap

and Aw upon jo are obtained.

(2) By retaining the second-order expansion terms, a

quadratic model for 5J supplemented by a linear

model of the constraining equations results. This

model can be used to determine the degrading effects

upon performance of the changes Ax0, Ap, and Aw when

not compensated by a suitable change Au in the con-

trol. This same model can be used to determine tile

optimum change hu to accommodate observed changes

as well as uncertainties in tile variables, 5x, Ap,

and Aw from the linear theory of optimum control

and estimation. This second-order sensitivity model

is probably the most important one to be considered

for the design methodology under discussion, since

it strikes a reasonable compromise between complexity

and accuracy.

(3) By modification of tile nominal control, the stochastic

and dual effects discussed can be accommodated, as

will be shown in Sec. III.

2. Example

To clarify these ideas, the following static optimization problein

discussed in Ref. 8 is treated:

It is desired to select tile speed u of a supersonic aircraft in

level flight such that the fuel expended per mile of travel is minimized.

The cost function is

c_T
j _ (ll -9)

cM

12



whe re

where

cr = specific fuel consumption = 0.29 • i0 -3 ib

s-i/ib of thrust

T = engine thrust, in ib

c = speed of sound = 968.1 ft/s at the prescribed

altitude of 50,000 ft

M = Mach number, here identified with the control

variable u.

The constraining equations are

L - mg + T sin (c_ + 6)

D - T cos (a + e)

= 0

= 0

pc2M 2

L = lift = CL _ _ S
2

(II-10)

CL cz ' CD

P

S

mg

0

pc2M 2

drag ( + 7]CLa(E2 )= = CO 0 2 S

= angle of attack, in radians

= fixcd angle determined by the aircraft

geometry = 0.05 rad

= air density = 361.8 10 -6 slugs/ft 3

at the prescribed altitude of 50,000 ft

= wing area = 530 ft 2

= weight = 34,000 lb

= aerodynamic parameters, which vary with

mach number M as shown in Fig. II-1.

Notation: The variables x, u, and p of Eqs. (II-3) and (II-4) are

identified with the following variables in the example

u = M x = T
1

x = (_
2

Pl = mg

P2 = S

13
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FIG. I1-1 VARIATION OF CLa, CDo, AND 7/ WITH M

3. Deterministic Optimization

For the nominal values of mg = 34,000 lb and S -- 5130 ft 2, tile varia-

tion of J with roach number M is shown in Fig. II-2. The optimum math

number is 2.863 fox" which

r _.

(X --

J =

6.133 [b

5.716 10 -4 rad

6.847 10 -4 lb/ft _ 3.,I23 lb/mile

4. First-Order Perturbation Model

It is assumed that the variables u, x, and p are allowed to vary by

small amounts Ax, Au, and Ap and it is desired to find the resulting

first-order variation AJ of cost; the variations Ax, Au, and Ap cannot

be chosen arbitrarily, but must continue to satisfy the constraining

Eq. (II-10), which effectively means chat the dependent variation Ax can

be expressed in terms of the independent variations Au and Ap and elimi-

nated from the expression for AJ, which thus becomes*

AJ = A1Au + A2/_ p (I1-11)

The sensit, ivity equat, ions used in this section are substantiated in Appendix A.
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= Amg, the corresponding sensitivity coefficientFor a weight variation _Pl

A 2 is +7.298 10 .9 . As expected, AI is zero, since u was chosen to be

optimal.

5. Second-Order Perturbation Model

It is again assumed that the variables u, x, and p are allowed to

vary by small amount Au, Ax and Ap subject to the constraining Eq. (II-8).

It is now desired to express the resulting cost variation 5J in terms of

the independent variations Au and Ap by considering terms up to second

order. The variation AJ now becomes

AJ = AiA,_ + AzA p + A.'BiiAu + Au'BI2A p + Ap'B22GP (11-12)
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where A 1 and A 2 remain unchanged and where the matrices B

B22 are

= 1.100 10 -4

11' B12 and

Bll

B12 = [-5.745 " 10 -9 3.686 10 -7 ]

B22 = (II-13)

0.690 10 -11 4.427 l0 -1

In tile static optimization example under discussion, we treat the

parameters Pl = mg and P2 = S in an identical fashion, although in an

automatic cruise control system, weight acts as a state variable and

wing surface is an inaccurately known parameter. By analogy with the

dynamic optimization problem, we therefore refer to that part of the

controller which compensates for" weight deviations Apl as "closed-loop"

and to that part of the controller which compensates for identified

deviations in P2 as "adaptive." It is noteworthy that the approach taken

allows one to treat the closed-loop and tile adaptive problem in exactly

the same manner. The adaptive system is simply viewed as a closed-loop

system in which additional inaccurately known quantit+ies are monitored

and compensated for by the controller.

l). Stochastic Analysis Phase

1. Discussion

Tile stochastic phase consists of modeling Lhe uncertainties by

appropriate probability density functions and of assessing the degrading

effects upon performance of these uncertainties for various possible con-

trol system impleinentations.

Encoding of the uncertainties that affect the variables x o, p, and

w by probability density functions can be done on the basis of actual

measurement, by consideration of known physical laws or by well-planned

interviewing procedures. For example: Wind-induced perturbations can

be measured, electronic circuit noi, se can be related analytically to

temperature, and the tolerance on a plant parameter p can be obtained

from t. he plant designer. For analytical convenience, these probability

density functions are often taken to be Gaussian.
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The simplest controller implementation to be analyzed from the point

of view of sensitivity is the open-loop configuration. For this case,

Au -_ 0 and the change in performance AJ is obtained from a Taylor series

expansion with Au =- 0. Since the deviations Ax 0' _p, and Am are random

variables, AJ is also a random variable. The mean E{AJ}, which can be

easily computed, is a good measure of the performance change caused by

the uncertainties Ax0, Ap, and Am.

The next most common controller implementation is the closed-loop

optimum configuration. Here, the control u ° is made a function of the

state and time, i.e.

u ° = g(x,t) Au = GAx (11-14)

Substitution of Eq. II-14) into Eq. (II-10) determines the variation,

Ax caused by the perturbations AXo, Ap and Am. The mean E{AJ], which

again can be calculated readily,is in general different for the open- and

closed- loop configurations.

As a next and very realistic step in complexity, we may assume that

the state x is not measured accurately or completely. The practical

implementation of the system, shown in Fig. II-3 now contains an instru-

mentation subsystem followed by an estimator, which may or may not be

optimal. These two constituents can be described by a "law of estima-

tion" of the form

^ A

A
= f(x,x,v,t) , (II-15)

A
where x is the estimator output and where the random variable v denotes

the measurement noise.

replaced by

Customarily, the law of control (II-14) is now

A
u ° = g(x,t) ; (II-16)

A
that is, the estimate x is used in lieu of the true state x. Lineariza-

tion of the laws of estimation and control provide the expressions
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A

Ax = ItA_ + MAx + v (11-17)

A
Au = GAx (II-18)

and substitution of (11-18) into the linearized equations of motion yields

tile variations Ax and Au in terms of tile deviations Gx 0 , /_p, /_w, and v.

Substitution of' /_x and Au into tile cost function yields L_J, the mean

E{GJ} of which can be computed readily.

The expressions E{Gd} corresponding to the open-loop and closed-loop

configurations with and without measurement noise tell the designer in a

quantitative fashion to what extent the performance of a deterministic

optimum design will degrade as a result of uncertainty for three common

design configurations, namely:

(1) The open-loop optimum deterministic configuration

(2) The closed-loop optimum deterministic configuration

(3) The closed-loop configuration with optimum deterministic

law of control in which the actual state has been te-
A

placed by the estimate x, which may or may not be

optimal. This configuration is shown in Fig. 1I-3.

If E{Ad} is sul'l'iciently small for one such configuration, a satis-

factory design has been achieved. If E{A.I} is unac(:epLably large, t, he

design methodology proceeds to the stochastic opt imization phase.
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2. Example

Proceeding with the aircraft cruise control example previously used,

we analyze the expected degradation of performance corresponding to the

two following situations:

(1)

(2)

The cruise-control system is an open-loop configura-

tion, for which the scheduled weight variation mg(t)
is precomputed. The standard deviation of this pre-

computed weight information is assumed to be 1000 lb.

The cruise-control system is a closed-loop configura-

tion in which the actual weight is sensed at all

times with perfect accuracy and the control u is

adjusted accordingly.

For both cases, it is assumed that the wing area S is known with

perfect accuracy.

From the results previously given [see Eqs. (II-11) and (II-i2)] it

follows that

5J = 7.298 • 10-9/Xpt + 1.100 • 10-4Au 2 - 5.745 10-9Au&pl + 1. 076 • 10-13Ap x2

(II-19)

For" tile open-loop cruise control system, Au = 0 and tile expected varia-

tion of cost is

13^ 2
E{A]} OL = E{7.298 " 10-9Apl + 1.076 " 10- tapl} = 1.076 " 10 -7 lb/ft

For the closed-loop configuration with perfect weight information,

the optimum law of control

Au = GApt

is chosen so as to minimize the cost variation AJ, that is

Au = 2.612 10-SAp 1

Thereafter, the cost variation _J is given by

(II-20)

AJ = 7.298 10-gAp + 0.328 10-13Ap_
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and the expected cost variation E{AJ} becomes

E{AJ} cL = 0.328 • i0 -7 ib/ft

The two values obtained for E{AJ} may now be interpreted as follows:

In the closed-loop casewith perfect information (E{AJ} cL = 0. 328 " 10 -7)

the control Au has been optimally adjusted to the variations APl and the

expected variation of cost cannot be reduced any further as a result of

control.* E{AJ} cL thus establishes a lower bound of cost, when there

exists an uncertainty of the type Apl , which effectively plays the role

of plant noise.

In the open-loop case

E{AJ} °u = 1.076 10 -7 > E{AJ} cL _ 0.328 10 -7

The unnecessary increase of cost W restllting from the absence of any

correction Au is thus

W = E{AJ °L - E{AJ} ct = 0.748 10 -7

If tile magnitude of W is tolerable, an open-loop cruise control system is

entirely adequate; if not, a reduction of #' by means of the more refined

control system configurations to be discussed in Part E below must be

attempted.

It is repeated at this point that tile quantity E{AJ} cL represents a

lower bound; if its magnitude is not tolerable, the only remedy is to

reduce the plant noise APl or to redesign the plant.

E. Stochastic Optimization Phase

i . Discussion

In the course of the stochastic optimization phase, the designer

attempts to supplement the control schedule u°(t) obtained in the course

of the deterministic optimization so as to reduce the degrading effects

*This statement applies to the second-order perturbation model under discussion in this section. Addi-

tional improvements may conceivably be obtained by use of higher-order models.
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of uncertainty by improved data processing. To accomplish this, the

following approaches, listed in increasing order of complexity, are

avai fable.

(i

(2

(3

(4

Supplement the control schedule u°(t) by an optimum
law control relating Au to Ax.

Supplement the control schedule u°(t) by optimum laws

of estimation and control; that is, determine the opti-
mum estimate A_ of Ax and relate Au to Ai.

Supplement the control schedule u°(t) by a correction

Au to compensate for identified parameter deviations

Ap; in other words, design an adaptive system.

Analyze the stochastic and dual effects and supplement

the original schedule u°(t) by a correction schedule

Au(t) in addition to the remedies discussed in (i) to

(3) above.

2. Example

For the cruise control problem discussed previously, we have already

calculated the expected cost variation E{AJ} cL for closed-loop control

with perfect information on Apl , and we have established the law of

control as

Au = 2.612 10-SAp_

We may now depart from the idealized situation of noiseless measure-

ments and assume that the actual variation Apl is measured by a sensor

the standard deviation of which is 200 lb; that is, the reading of the

sensor is Apl + v, where v is the measurement noise. In actual practice,

the true weight of the aircraft is not known perfectly, because the fuel

flow gauges accumulating the weight of the fuel burnt are not completely

accu rate.

For the closed-loop system with imperfect weight information, the

waste W is related to the measurement v of standard deviation _ = 200 lb

in Appendix A as

W = _11 _2 = 0.3 10 -a

If this added cost W is excessive, we may either use a better instru-

ment (the standard deviation of v is less than 200) or else we may estimate
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the true weight more accurately. The simplest approach would consist of

time-averaging the accumulated readings of the fuel gauges, whereas a

more effective approach would consist of utilizing in addition to the

readings of the fuel gauges the information contained in the constrain-

ing Eq. (II-13). For example, if the thrust T and the speed M are mea-

sured, the weight mg can be inferred from (II-13).

As a result of estimation, tile measurement noise v is effectively

reduced and the resulting g' can be calculated exactly as was done before.

To illustrate tile adaptive correction, we may assume that some aero-

dynamic parameter, for example P2 = , is not accurately known. From the

second-order perturbation model of Eq. (11-19), we can derive an optimum

law of adaptation in exactly the same manner that the optiinum law of

control was previously derived. The result is

Au = -1.675 10-3Ap2

Tile improvement in cost it allows is established ill exactly the same manner

that closed-loop control was previously justified.

Generally speaking it should be noted that, with tile perturbation

model corrsidered here, adaptation is treated exactly like closed-loop

control: In tire closed-loop configuration, the correction Au is made

to depend on an observed variation of the plant state, whereas in the

adaptive configuration, an additional correction Au is inade to depend

on an observed variation of the plant model.

For the simple example chosen to illustrate this section, tire sto-

chastic and dual effects might enter as follows:

Stochasttc Effect: Let us assume that instead of the quadratic perturba-

tion model of Eq. (I1-19), we use a more elaborate model of tile general

form

AJ = f(Au,Apl) (11-21)

We assume for illustrative purposes that the random variable Apl of mean

m = 0 and standard deviation c_ is not measured. The problem consists of

finding a correction Au such that the expected cost variation E{A,I} is

minimized. If tile function f in Eq. (I1-21) is quadratic, then Au is
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zero, since u ° was an optimal deterministic control. If f has a different

form, then there will in general be a correction Au which reflects this

stochastic effect.

Dual Effect: This effect consists of deliberately departing from the opti-

mum deterministic control u ° in order to acquire more in formation about Ap.

A possible manifestation of the dual effect in this example might consist of

perturbing the optimum speed u°by Au in order to estimate the weight mg

and/or the wing surfaces more accurately. To be more specific, we may

assume that the variables M and T are measured and we want to estimate

the parameters mg and S from the model (II-10). In a first experiment,

we select M = M1; a thrust T = T 1 and an angle of attack a = a t follow.

Equations (II-10) are written compactly in terms of the remaining unknowns

as

gl(al,mg,S) = 0

g2(al,mg,S) = 0 (II-22)

Since there are three unknowns and only two equations (II-22), an addi-

tional experiment must be performed with M = M 2, T = T 2 and a = a2; the

following two additional equations are now obtained

gl(a2,mg,S) : 0

g2(a2,mg,S) = 0 (II-23)

The four equations (II-22), (II-23) suffice to solve for the four unknowns

_1' ao' mg, and S. To obtain the set (II-23), M had to depart from its

optimum value, which caused a temporary expenditure of fuel.
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PRECEDING PAGE BLANK NOT R_.

Ill AN APPROXIMATE METHOD FOR COMPUTING THE PERFORMANCEOF A

STOCHASTIC, NONLINEAR CONTROL SYSTEM WITH APPLICATIONS

TO SENSITIVITY AND OPTIMIZATION THEORY

A. Introduction

In this section, the equations needed to apply to dynamic systems

the systematic procedure for designing control systems presented in the

preceding section are derived.

The first step in the procedure is determination of the optimal

deterministic control, either in the form of an open-loop control schedule

or a closed-loop control law. By linearizing the necessary conditions

about the nominal trajectory defined by the control schedule that is

9
optimal for a nominal initial condition, Breakwell, Speyer, and Bryson

obtained a linear approximation to the optimal closed-loop control law,

which is valid in a neighborhood of the nominal trajectory. In Sec. III-A

an approximate expression for the performance of a control system, in

which the controller consists of a control law that is a nominal control

schedule plus a time-varying linear function of the difference between

the estimated and nominal plant state and an estimator that is charac-

terized by a second time-varying linear gain, is derived by application

of the Hamilton-Jacobi equation. The novelty of this development is its

consideration of stochastic effects and suboptimal control and estimation.

Computation of the sensitivity of system performance to disturbance

inputs, measurement noise, and parameter ,neertainty is the second step

of the procedure outlined in Sec. II. In the predecessor contract 5 an

expression was obtained for the performance of discrete-time linear

systems with Gaussian disturbances and quadratic cost that clearly dis-

plays the sensitivity to disturbances and measurement noise. In Ref. i0,

analogous results are presented for the continuous-time case. These

results are extended to nonlinear systems and parameter uncertainties in

Sec. III-B by use of the results of Sec. III-A.
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As KushnerUdiscovered, the deterministic optimum control schedule

is not necessarily the best nominal control schedule for use in the

controller described above; furthermore, the feedback and estimator gains

may also need to be varied to obtain optimum performance when parameter

variations are present but not estimated. A deterministic optimal control

problem whose performance index is the expression for performance derived

in Sec. III-A is formulated in Sec. I[I-C in such a manner that the

solution provides the values of the nominal control, feedback gain, and

estimation gain that are optimal in the regions for which the approxi-

mations involved are valid. It is shown }low such a problem may be solved

by the gradient method; similar problems in which sensitivity costs are

added to the performance index have been consictered by Tuel 12 and D Angelo,

Moe, and Hendricks, 13 but their sensitivity measurement is not derived

from the original performance index.

B. Computation of Performance

In this part, perturbation theory is applied to the Hamilton-Jacobi

equation to derive an expression accurate to terms of second degree for

the performance of a nonlinear, stochastic control system.

1. System Description

a. Plant

The plant to be controlled is described by the state equation

= f(x,u t) + w (Ili-1)

where* x is the plant state, u is tile control, and w is tile disturbance

E(w) = O, E[w(t)wr(r
A

] = Q(t)_ t - 'r

E[x(O)] xA(O) E{[x(O) -xA(O)] [x 0 A(o)]r} A= , - = p(o)

and by the measurement equation

z = Hx * v , (11I-2)

* In this presentat, ion arguments of functions will be suppressed unless t is necessary to display them.
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where z is the measurement, v the measurement noise,

A

E(v) = O, E[v(t)vr(T)] = B(t)_(t - _-)

The performance index is

J = E { frZ(x,u,t)dt + $[x(r),r]}
o

(III-3)

b. Controller

The controller consists of a control law

_ uo K(x_ _ _o) (III-4)

where the nominal control u ° and nominal state x ° obey

_o = f(x°,u °,t) ," (III-5)

and an estimator described by*

A

i H_) + 1 oPx = f(_,u,t) + K(t)(z - /2f2 x (II1-6)

A

where x_ is the estimate of the plant state and P is the conditional

covariance of the estimate*

A £x

p = E((_ x)(Ax x)r/z} (111-7)

Z(t) _ {z(T) : 0 < 7 < t}

A L ?2f(_)(/2op)(_)
j,k _x(J)_x (h) o o

x , u

A

An equation for P will be given below.

Superscripts in parentheses refer to components; o is used to denote quantities evaluated along

the nominal trajectory. The necessity for the last term in Eq. (III-6) is apparent from Eq. (B-2)

in Appendix B.
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2. Estimation

The conditional probability density of the state of the plant, which

Wonham, _ Meier,5 Mortensen,B and others have pointed out is the optimal

estimator for control purposes, can be computed using Bayes rule in the

discrete time case 16 and by use of a generalized Fokker-Planck equation

in the continuous time case. B'17 An approximate equation for the condi-

tional mean that takes the form of Eq. (IlI-6) with

A A A- 1
K pHTB (111-8)

can be obtained by application of perturbation theory' to the Fokker-Planck

equation. 17

In Appendix B-1 it is shown that

E[x(t) Ax(t)/Z(t)] = 0 ; (III-9)

A A

hence x is an unbiased est mator. An approximate equation for P is also

derived in this appendix:

A A A A A A AAA

p _ (_" - _H)P + p(_o _ mI) + O + _RK (lll-_O)

A

Because _" is evaluated along tile nominal trajectory, P may be computed
A A

a priori; P will be smallest for the choice o[ K given by ([II-8).

3. Control

Using a limiting argument on the dynamic programming functional

equation for discrete time stochastic control problems, Kushnerladerived

a generalized Hamilton-Jacobi equation for solving stochastic control

problems that can be applied to the problem described in Eqs. (!II-1) to

(III-7) as follows: The whole system, plant, and controller, is taken

as a fictitious plant to be controlled whose state may be measured

exactly, but over which no control may be exerted.

The use of this technique to approximately compute the performance

of the stated problem is given in Appendix B-2; the results are
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J = Jd + __T(_ - x o) + [_(0) - x°(o)]Tp(o)[_(0) - x°(O)]

,A -- AA A A
A Ttr + 2P(KB pHr)Kr]dt+trfP(O)P(O)] + 2 [PQ pP +

0

where Jd is the nominal deterministic cost given by

III-11

dd = frl(x°,u°,t)dt + ¢P[x°(T) T]
o

III-12

the adjoint variable k obeys

__ = (H o,_ HoK) T, X(T) = _o
X x 1,

111-13

where H is the Hamiltonian function

H = l + xrf

The cost matrices P and P* obey

1 coo-b = pro + f orp + +HOx _ p, P(r) 2) xx

(p o _ (p 1HO)T 1
= f+ 1H° K + K T f: +- ---KrH K

(III-14)

and the cost matrix P obeys

-P : P(/O-Km + (F- /0_)_- P/: +- +<+ +<_HOd<
2 xu

P(T) = 0 (III-15

Some comments about these results are in order:

(1) If the nominal control u ° is the deterministic optimum,

then Hi = 0 and Eq. (III-13) reduces to the familiar form

of the adjoint equation.
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(2)

(3)

(4)

For the optimal estimation gain given by Eq. (111-8) the

third term in the integrand of Eq. (II1-11 is zero.

If the optimal control gain

= 2(H2o/ + 7Hx 

is used then P 0 and this third term again drops out.

For the linear quadratic case these results are exact

and were previously derived in a different manner by

Meier and Anderson. m

C. Sensitivity

This section presents the application of the theory developed in

Part B, to computation of sensitivities.

l. System Description

It is desired to determine the sensitivity to disturbances, measure-

ment noise and parameter variations of a control system described by

Eqs. (11I-1) to (1II-7) with f(x,u,t) replaced by f(x,u,a,t) and l(x,u,t)

replaced by l(x,u,a,t), where _ is the parameter vector. Furthermore,
A

t*" is taken as the deterministic optimum and K and K are given tile

optimum values, within the validity of the approximations, of

A AAA
K = PHR -1

1HO)K = 2H°_ 1 forp +_ , (I11-16)
2 ux

A

where P is given by Eq. (III-10) and P is given by Eq. III-14).

2. Augmentation of the State Vector and Partitioning

of the Matrices

In order to compute sensitivities with respect to _, the state

vector must be augmented:

(III-17)
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Since a is constant, but unknown, _ = O; the differential equation for

the augmented state is

i = f(x,u,t) + _ = + , x(o) .....

o L _(o)j

(111-18)

Similarly, the measurement equation, control law, and estimation equation

may be written for the augmented state

z = Hx+v

where"

A o)u = u ° - K(X- X

^ ^ ^ H_X = f(x,u,t) + K(z- ) +
^

1 fop (III-19)
2 XX

X = , X o = -

and

H = [HIO] , K = [_IK_] , K =

i° = f(X°,u°,t) , X°(O) = X(O)

A

Because of the form of K, the estimate _ of the parameter vector

will equal the nominal value ao (i.e., no estimation takes place); hence,

the performance of the system will be independent of the choice of K a.

In Sec. III-D, adaptive situations, in which _ is actually estimated,

will be considered. Open-loop control may be considered as mathematically

equivalent to infinite measurement noise.
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Equations (III-18 and (III-19) describe a system exactly like that

given in Sec. III-B in Eqs. (III-i) to (Ill-?), eccept that bold-face

type replaces ordinary type. In the following paragraphs, the equation

for performance given in Sec. III-B is applied to the bold-face system

and the results interpreted in terms of sensitivity theory.

3. Solution of the Control and Estimation Equations

Tile matrix P corresponding to the augmented system can be parti-

tioned as follows

Px i P,oj

I

p ___ + ___ (111-20)
I

pr i Paxa I

The symbol Px does not indicate partial differentiation with respect to

x, etc. In Appendix (B-3) equations are given for the parts of P by

substitution of Eq. (I11-20) into Eq. (III-14) printed in bold-face

type. Because of tile form of f, the equation obtained for P is iden-

tical with Eq. (1II-14) printed in ordinary type.

If K is taken as

K _ 2H°-1 (f°rP,,,_ _, + 1H°),__,x

= H_u forp + 2Hu, 211o-i Crp _ + Itto

-P will be identically zero. This is possible, since the choice of g_

is arbitrary as explained above.

A

Similarly, P may be partitioned into

A I A 1

P _ P

A x I xa

p : ---+--- (111-22)
AT II A

Pa I Pa
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A

Since Eq. (III-10) for P is linear, the superposition principle may be

applied:

A

P(t) t
I

b_(t) I 0
I

= - _ + 0

I

I 0

I 0

t) lIP _(0 0r(t) (III-23)

A

where Px is the solution of Eq. (III-10) printed in ordinary type and*

A

_ (fo _ KH)O , 0(0) = I (III-24)

Substitution of gq. (III-23) into Eq. (III-10), this time printed in bold-
A

face type, will show that the form of P is a solution. 0 may be partitioned

into

0 = x- t-,, (III-25)
I

Equations for the parts of 0 are given in Part 3 of Appendix B.

4. The Sensitivity Belations

When Eq. (III-11) is written in terms of bold-face quantities and

the partitioned forms substituted, the following expression for perform-

ance results:

J fT A AJd + tr [P(O)F'(O)] + [P*P + PQ]dt
0

+ AT(O) [(_(0) . _o] + [_(0) O_°]rp_(O)[(_(O) - 0_°]

A

+ tr {[Pc_(O) + S_]P_(O)} (III-26)

where

T

-- 5 EeLt 
0 xa,

r r O_P_]dt , (III-27)+ 8f_Px_8 a + SaP _8 a +

is the fundamental matrix for the estimation equation linearized about the nominal trajectory.
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and the vector ha, a part of the vector h under a suitable partition,

obeys Eq. (B-34).

The first term of J, Jd' is the deterministic cost, the second term is

the cost caused by initial state uncertainty, the third is the cost caused

by disturbances and measurement noise, and the remaining terms are the

cost caused by parameter variations; hence, P(O) may be interpreted as

the sensitivity to initial state uncertainties, P*(t) as the sensitivity

to uncertainty about the state of the plant because of measurement noise,

and P(t) as the sensitivity to disturbances. These latter three quantities

were found in the previous work; the new quantities ha, Pa, and S a are

described in the sequel.

The first-order change in J caused by a change in nominal value can
A

be computed by assuming temporarily that c_(0) /c_°(0). * Because this per-

formance increment is given by h_r[_(0) - a°(0)], h a may be termed the

sensitivity to the value of c_. Consider Fig. III-1, in which the lower

curve is the performance as a function of the actual value of a parameter

when the controller optimal for that value is used and the upper curve is

FIG. III-I

J

/
,,9'

%% _J_

0 Go G

NOMINAL CONTROLLER

OPTIMAL
CONTROLLER

TA-5967-24

RELATIONSHIP BETWEEN PARAMETER SENSITIVITY QUANTITIES

the performance when the controller optimal for the nominal value is

used; h a gives the slope of the two curves at the nominal value _0"

system design, h a tells what parameters should be changed and in what

direction to improve system performance.

In

* A
This contradicts the earlier assumption that a(0) = a°(0), which was needed to show that the choice of

K a was irrelevant; however, _ is independent of K_ in any case and we are not concerned with second-

order sensitivities here.

34



A

The term tr[Pa(0)Pa(0)] gives the cost in performance resulting

from differences between the actual and nominal values of _, even though
A

the true value of a is determined at t = 0, while tr[S_P_(0)] gives the

additional cost when these differences are not determined; hence, Pa(0)

is the sensitivity to a priori uncertainty in a while S a is the sensi-

tivity to not removing this uncertainty a posteriori. In Fig. III-1, Pa

is the second derivative of the lower curve at a ° and Pa + S_ is the

second derivative of the upper curve. _ tells what parameters should

have close tolerances, while S a tells what parameters should be estimated

or measured in an adaptive scheme to improve performance.

The value of A, and thus Xa, is independent of the choice of K and
A

K [see Eq. (III-1)] and depends only upon u °. The independence of h a

from K was first noted for linear systems with perfect measurement by

Pagurek 19 and shown to hold for general systems by Witsenhausen2°--a result

to be expected in view of the above interpretation. Pa depends upon both
A

u ° and K but not on K whereas Sa depends on all three quantities; again

those results are to be expected.

A program, described in Appendix A 3, has been developed to compute

the sensitivity measures derived above as well as to perform the optimi-

zation presented in the next section. As presently coded, the program

handles a general linear system with quadratic performance, but it can

be extended to nonlinear systems and/or nonquadratic performances by

writing subroutines for computation of the necessary partial derivatives.

5. Example

A program has been developed to compute the sensitivity measures

defined above for a general linear system with quadratic performance.

To illustrate the theory, a simple example solved by this program is

presented. The plant under consideration, shown in Fig. III-2, is

described by

x = Fx + gu + w ,

z = Hx + v , (III-28)
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X(2)

w (2) v
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whe Fe

FIG. III-2 PLANT FOR ILLUSTRATIVE EXAMPLE

A
E[w(t)] = 0 E[w(t)w(_r) r] = Q3(t - n-)

Ely(t)] = 0 E[v(t)v(_r) T] = _8(t - n-)

EJ E:I0 0 O. 1 0
h

F , (; = , // : [i 0], 0 = ,

a (_ a (2 0.01

and Av takes various values.

A gain parameter and a dynamic parameter with nominal values

c_ (l) = 1.0 and c_(2) = -0.5 respectively can vary. Initial conditions are

Ax(0) = x°(0), which takes various values, and

A

P(o)

and performance is defined by

= j ld r u2dt + xr(l)P(1)x(1)
o

where r = 0.03 and P(1) Lakes several values.

(1II-29)
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Tables III-1 to III-3 contain the sensitivity results for the illus-

trative example just described. In Table III-1, the quantities previously

unspecified are given as well as the various parameter sensitivities,

while Tables III-2 and III-3 present the nominal controls and trajectories

as well as the disturbance and measurement noise sensitivities.

Table III-1 also lists the performances J for the various situations;

three values of J are given: the first corresponding to

A011Pc_ =

0

i.e., no parameter uncertainty, the second corresponding to

A[°1°1i°c_ =

0 O.

i.e., uncorrelated parameter uncertainty, and the third corresponding to

A

P_

i.e., negatively correlated parameter uncertainty. In addition to the

system with a noisy measurement as given in Eq. (III-28) results are

given for a system with perfect measurement of x and no measurement.

Case 2 differs from Case 1 in having a different initial condition

on x °, while Case 3 differs from Case 1 in having a different performance

index. Note that the parameter sensitivities are a function of both

initial condition and performance index, whereas the disturbance and

measurement noise sensitivities depend only on the performance index

because of the linearity of the system.

Consider Table III-1 in greater detail. The components of h a indi-

cate that an improvement in performance can be obtained by increasing

either the gain or the dynamic parameter but that a greater effect is

obtained from changing the gain. Since the dynamic parameter is negative,

37



Table III-1

PABAMETER SENSITIVITY MEASUBES FOB ILLUSTRATIVE EXAMPLE

CASE

x°(O)

P(1)

ha(O)

m

1 0

Go o

i

-0.0692

-0. 2023

Pa(O)

0.0118 0.0533

_0.0533 0257L

Perfect,
Mea su remen t,

Noisy
Measurement

j 0.1385, 0.1697, 0.1567

ScL

"0.0090 0.0119_

0.0119 0.0342

J 0. i847, 0.2489, 0.2137

S_

J

No
Measurement

G

-0. 0483 O. 1225

O. 1225 O. 3253

0.2884, 0.3743, 0.3276

-0.0024 0.180_

0.1803 0.5274
D

[lo]
0 0

--0.0735

-0.6458

0. 0103 O. 0399

0.0399 0.8212_i

0.3887, 0.4833, 0.4590

0.0049 0.00707

0.0070 0.1091

0.4349, 0.6234, 0.5992

_.0152 0.1038 °

_.1038 0.0388_

1 0

0 i_

-0, 0247

-0 3531i

! 0.0188 0.0122 _

0.0122 0.3147

0.2960, 0.3437, 0.3480

0.0130 -0.0351

-0.0351 0.1301

0.3728, 0.4504, 0.4344

B I

0.3472 0.0679

0.0679 0.0955

0.5385, 0.7914, 0.7504

-0.0134 0.13501

0.1350 1.6843|

0.4717, 0.5868, 0.5171

-0.4578 0.280_

0.2862 0.2593
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Table III-2

DISTURBANCE AND MEASUREMENT NOISE SENSITIVITIES FOR CASES 1 AND 2

CASE 1 CASE 2

x°(t)

1.0000

0,0000

- O.9857-

-0.2803

-0.9452-

-0.5233

0.8822-

i-0.7296

-0.8004-

-0.8996

0.7035-

u°(t)

-2.9926

-2.7559

-2.5070

-2.2455

-1.9706

-1.6817

x°(t)

-i.0000-

1.0000

-1.0719-

0.4503

-1.0923-

-0.0303
B

i.0681

-0.4430

-1.0059-

-0.7888

0.9125-

1.0687

o(u t)

-5. 3472

-4.9244

-4.4799

-4.0126

-3.5215

-3.0054

P(t)

%.i141 0.0898 -I

0.0898 0,0706 I

O.1459 0.1057 -

0.1057 0.0766

0.1902 0.1253-

0.1253 0.0826

0.2528 0.1493 -

0.1493 0.0882

0.3415 0.1770

0.1770 0.0917

0.4636 0.2051-

0.205i 0.0907

p (t)

w

0.2687 0.2114

0.2114 0.1663

O.372.1 0.269_

0.2697 0.1954

0.5236 0.3452-]

._0.3452 0.22761

-0.7427 0.4387

0.4387 0.2591

1.0439 0.5411

0.5411 0.2805

-1 0339

0.5948

-1.1326
m

-1.3781
- 0.794_

_1.283_

-2.4630
0.6195 0.2246

0.2246 0.0814

_1.6812 0.6097_

0.609? 0.2211

_"0.4781-

-i. 1963

0.3567

-1.2249

0._343

-I.]185

t- 0.1142

-1. 1772

-1.0592

-0.7238

-0.3711

0.0000

" O. 658q

-1.4331J

0.5099

-1.5186

-- w

0.3564

-1.5399

-0.2040

-1.4971

-1.8929

-1.2935

-0. 6630

0.0000

"0.7881 0.2196--

0.2196 0.0612

0.9236 0.1758 !

0.1758 0.0335

0.9894 0.0965 !

0,0965 0.0094
i

m

1.0000 0.0000

[0.0000 0.0000_

] 1.6071 0.4479"
i

0.4479 0.1248 i

m m

1.0303 0.1962

0.1962 0.0374

-0. 3105 O. 0307

_0.0303 0.003 L

O.O000 0.0000-

0.0000 0.000L
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Table III-3

DISTUBBANCE AND MEASUBEMENT NOISE SENSITIVITIES FOB CASE 3

x°(t)

- 1.0000-

.0000

u°(t )

-4.2642

P(t)

_.2546 0.127_

0.1279 0.0810

P (t)

0.5455 0.3454-

0.3454 0.2187

- 0.9801-

-0.3841

0.9259

-0.6844

).8459

- ) 9014!
-- " ]

-0.7484-

-1.0359

0.o415

-1. 0881

0.5335

-1.0581

0-43261

O. 9460

- 0.3470-

-0.7514

- 0. 2850-

-0.4740

0.2549

-0.1t54

-3.6127

-2.9279

-2.2081

-1.4514

-0. o500

0.1801

I.0589

1.9823

2.9500

3.8408

_.31o2 0.1440_

i0.1440 0.0852

_.3935 0.1604-

0.1604 0.0887
B

0.4878 0.1754

0.1754 0.0911

"_.5971 0.185_

0.185o 0.0921

-0.7139 0.186_

L0.1809 0.0921

_.8247 0.1752"

0.1752 0.0934

_.9136 0.148_

0.1486 0.1015

_.9702 0.109_

0.1091 0.1295

_.9953 0.061_

0.0010 0.2234

1.0000 0.0000

0.0000 1.0000

_.6910 0.4089-

0.4089 0.2420

_.8578 0.4743

0.4743 0.2623

_.0250 0.5324

0.5324 0.2765

_.1484 0.5696]

0.5096 0.282_

_.1646 0.5739-

0.5739 0.2828

-1.0229 0.5455-

0.5455 0.2909 I

-0.7359 0.5028-

0.5028 0.3436

'0.3967 0.4710-

0.4710 0.5591

_.1242 0.4545-

0.4545 1.0635

-0.0000 0.0000-

0.0000 33.3333
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increasing it implies reducing its absolute value. From the values of

Pa and S a it is seen that, for all three cases, the system is more sensi-

tive to variations and uncertainties in gain than in the dynamic parameter.

Because the control law is not optimized with respect to parameter varia-

tions the sensitivity is not necessarily amonotonic function of the

quality of the measurement system. For example in Case 2 the sensitivity

to dynamics changes is greater for the noisy measurement than no measure-

ment and in Case 3 the system with noisy measurement leads to less

sensitivity to gain changes than the system with perfect measurement.

Now consider Table III-2 and III-3. Case 3, which has more stringent

performance requirements (i.e., a cost on final velocity x (2) as well as

position x (1)) is more sensitive than Cases 1 and 2 to disturbances,

velocity uncertainties, and position uncertainties occurring at early

times. However, the latter cases are more sensitive than the former

cases to position uncertainties occuring at later times.

D. Optimization

The controller used in the previous section consists of an optimal

estimator of the state, followed by the optimal deterministic control

law. Unfortunately, in many situations such a system is too sensitive

to uncertainties and, therefore, the controller must be modified either

to reduce the sensitivity (the stochastic effect) or to reduce the un-

certainty (the dual control effect). Several options are available for

reducing the sensitivity: By changing the nominal trajectory reduced

sensitivity to uncertainties may be obtained at the cost of poorer
A

deterministic performance. Changing K and K reduces the sensitivity to

parameter variations and uncertainty at the expense of increased sensi-

tivity to disturbances and measurement noise. The amount of uncertainty

about parameter values can be reduced by estimating them (i.e., using an

adaptive controller), which for the perturbation situation under consid-
A A

eration means using the optimal value of K instead of K a = 0 as in the

previous section. Furthermore, because of the dual control effect,

changing u ° from the deterministic optimum may aid estimation of the

parameters.

i. Problem Statement

A

Optimal values of u °, K, and K can be found by solving a determinis-

tic control problem in which they are the control variables.
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a. State Equations

The state vector for this control problem includes not only the

state x ° of the original problem, but also the adjoint varlable _, the
- A

cost matrices P and P, and the covariance P. Therefore, the state equa-

tions will include in addition t o the state equation of the original

problem, Eq. (III-5) in ordinary type; the adjoint equation, Eq. ([[I-13)

in ordinary type, and Eqs. (III 14), (III-i5), and (Ill-10) in bold-face

type or their partitioned versions given in Appendix A-3.

For the nonadaptive optimization

K = , K = (III-28)

A

where K and K are control variables to be determined along with u ° and

K a is as given in Eq. (III-21). For adaptive optimization K is as given

in Eq. (III-21) while

A A A
K = pHrB-1

IAIp HTR -

A A

(III-29)

and only u ° is to be determined.

In applying these formulas it should be remembered that P = Px,
A A

but P _ P .

b. Performance Index

The performance index to be minimized is found by substitution

of the partitioned forms into Eq. (11[-11) in bold-face type:

A

J = Jd + tr[P(0)P(0)] + tr{[Pa(0) + Sa]Pa(O)}

j-T A A --tr(PQ + P*P + 2AP )dt , (I11-30)+

o
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where

and

AA A A

A = (KB - PH T )K T

S(Z

A -- A --

fT{_? T [p*- HTKTp - (ftTKTPx)T]_
0 xa, x_

A -- A --

+ (_T p,
xa ( xa - HTKTPxa)_a + _r(P*a - HTKTPxa)T_

¢Z X(Z

+ _P_)dt (III-31)

These results are essentially the same as those given in Eqs. (III-26) and

(III-27) except for the additional terms containing Px and Px_' which are

not zero in the nonadaptive case because K does not obey Eq. (III-21).

Equations for Px and P _ are given in Appendix A-3.

In performing the optimization a slightly different form of
A A A

Eq. (III-30), where use of P and ,_ is replaced by use of P , Pxa' and

Pa, is desirable:

A A

J = Jd + tr[P(0)P (0)] + tr[P_(0)P (0)]

A A A

+ j,r [tr(PQ + P*Px + 2AxP_ ) + tr(2P*arPxT + P*P_ + 2B_Px_ )] dt
o

(III-32)

where

AA A A

A x = (KB - pxHT)K T

A A

Bax = -(pTaHT)KT

A A A

Equations for Px" Pxa and Pa are given in Appendix A-3.

A A

As the measurements become noiseless (B approaches zero), K

becomes infinite; however, A x and B approach finite limits; for example,

for perfect measurement of all components of x
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A x 0

A

Ba x = -p_F 2 (II1-33)

A

In the adaptive case with no measurement noise Pa will, of course, be

zero .

2. Problem Solution

The problem just described is a deterministic optimization problem

that carl be solved by use of the gradient method with the deterministic
A

optimum values of u°, K, and K as the initial choice of controls. To

apply tile gradient method, the Hamiltonion (which is a function of time

the above control variables*; the state variables t x °, A, Px' Pxa' P '
_ _ A A -- --

ePx' _a x Px_' and Pa and their adjoints X x F I-_a,, F

F , Fax, F a) must be written

H = l(x°,u°,t) + krf(x°',u°,t) 7r(H2r - KrHsr)

A A

+ tr(PQ + P*Px + 2AxP x + V P
x X

-- • A A

2FxP x + F P x )

-- A AA -- --"

*T) cc x ct+ 2tr(Px_f x + B_ P _ + F xp _ + Fa px_ + F P_ )

A A A

+ tr(P*P + F p_ + F P (III-34)

Note that the operation tr(AB) on matrlces is equivalent to the operation

aTb on vectors. By differentation of 1! with respect to the state variables,

equations for the adjoint variables are obtained and by differentiation

with respect to the controls the gradient is obtained. The results, which

are complicated, are displayed in Appendix (A-3), which describes a program

embodying this optimization technique.

Although the term variable is used, it. should be understood the above quantities may be vect.rs IlI"
eveti maLFices.

* Note that Pax and Pa are zero because of the form of Ka used.
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IV OPTIMUMDESIGN OF INSTRUMENTATIONSYSTEMS

A. Introduction

The mathematical theory of deterministic optimal control is predi-

cated upon the assumption that the complete state vector is perfectly

known. This implies that the plant is fully instrumented and that the

sensors are noiseless. In actual practice, it is usually uneconomic to

measure the complete state vector and the assumption of perfectly noise-

less sensors is illusory. Under these conditions, the designer attempts

to achieve a degree of system performance sufficiently close to that of

the idealized noiseless optimal control system with an instrumentation

subsystem that can be economically justified and practically realized.

The most straightforward (though not always the best) approach to

design feedback control systems with inaccurate and incomplete state

information is to implement the optimum deterministic law of control

found for the ideal system and to supply this law of control a suitable

estimate of the state. As a consequence of sensor noise, these estimates

are affected by errors and the performance is degraded since the control

signal generated by the law of control does not match to the true state,

but an estimate thereof.

During the design phase of the system, it is desirable to consider

the trade-off between performance degradation caused by imperfect in-

strumentation and the dollar cost of the instrumentation subsystem. In

this section, a logical approach to select an instrumentation subsystem

that minimizes performance degradation subject to restrictions on

instrumentation cost (or bulk, weight, etc.) is presented.

For reasons of convenience, we will characterize the instrumentation subsystem by its dollar cost. It

is clear however, that weight or space constraints can he handled in exactly the same manner that cost

constraints are handled here. Furthermore, reliability constraints, or even the R & D costs and risks

associated with the procurement of a novel sen_or can be handled by appropriate extensions of the

procedure to be discussed. For details, the reader is referred to "The Application of Advanced

Technologies for Future Missile Guidance Problems", by G. A. Branch, P. E. Mervitt, J. Peschon,

A. Korsak, Fourth Quarterly Report, Contract NOw 66-0364, SRI Project 5992, Stanford Research Institute,

Menlo Park, California (April 1967) CONFIDENTIAL.
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The step-by-step procedure to accomplish this design goal is as

follows

1 Determine the optimum law of control assuming that the state

is known perfectly. Let u(x,t) denote this law of control.

2 For an assumed sensor configuration, establish a law of

estimation of the form kx(x,u,v,t), where v is the sensor noise.

A
3 Feed the state estimate x to the law of control u(',t)

and determine the performance degradation AJ caused by

the sensor noise v. Relate AJ to a suitable statistical

summary of v, characteristically its covariance matrix.

4 Relate the cost C, in dollars, of the instrumentation

subsystem to this same statistical summary of v; also

establish a range from which this instrumentation sub-

system can be selected.

(5 Select from this range that instrumentation subsystem

which minimizes the performance degradation AJ subject

to an upper bound on cost C.

In this formulation, the instrumentation subsystem is treated as a

resource, which should be used in the best possible manner. As the im-

plementation of most iustrumentation systems (especially in space

applications, where instrumentation usually includes telemetry and as well

entails significant expenditures of cost, weight, bulk, etc. ) it is of

paramount importance to select its characteristics carefully in relation

to the systems perl'ormance function.

Note: For an instrumentation subsystem of given quality, the per-

formance obtained in this manner is usually not optimum, even if the

estimator selected in Step (2) is an optimum (for example, least variance)

estimator. ]'he reasons for this is that the rigorous approach to design

control systems with noisy state information is the theory of combined

optimum control and estimation; 5 one practical consequence of this theory

A
is that the law of control in general not only depends on the estimate x,

but also on the higher moments of this estimate. However, the design

procedure previously outlined can be extended in principle to the com-

bined optimum control and estimation problem, since the cost a ultimately

depends on the characteristics of the instrumentation subsystem. The

approximate solution of combined optimization problems discussed in

Sec. Ill provides this functional relation.
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B. Control System Configurations

We consider a closed-loop control system having the general con-

figuration shown in Fig. IV-1.

CONTROLLER

W

PROCESS _-

V

INSTRUMENTATION

SUBSYSTEM

TA-$967--14

FIG. IV-1 CONTROL SYSTEM, COMPRISING A PROCESS,

AN INSTRUMENTATION SUBSYSTEM, AND A CONTROLLER

Given the process, the perturbations w(t) and v(t) and the initial

condition of state Xo, the operating cost

d = E{frl(x,u,t)dt + _P[x(T)]} (IV-I)
o

depends on the characteristics of the controller and of the instrumenta-

tion subsystem.

The characteristics of the controller can be selected on the basis

of one of the following assumptions:

i. Nonoptimal Control and Filtering

This is the traditional approach _or servo system synthesis. The

controller embodies two relations of the form

u = g(xA, t)

h h A

x = " f(x,u,v,t)

(IV-2)

(IV-3)
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Equation (IV-2) represents the law of control, whereas Eq. (IV-3) represents

the law of estimation. After both laws have been selected, possibly on the

basis of computer simulations, the closed-loop system of Fig. IV-1 can be

described by a vector differential equation of the form

x = f(Y,w,v,t) , (IV-4)

where

X =

represents the expanded state of the system; this state includes tile plant

and estimator (filter) dynamics. Its performance is measured by the cost

function of Eq.(IV-1), in which the expectation is taken over the pertur-

bations v and w.

2. Optimal Deterministic Control

It is now assumed that the process state x is known with perfect

accuracy and that there are no perturbations, i.e., w = 0. The classical

theory of deterministic optimum control yields, for a closed-loop system

configuration such as shown in Fig. IV-l, a law of control

u = g(x,t) , (IV-5)

which would minimize the deterministic cost

dd = ff l(x,u,t)dt + _P[x(T)] (IV-6)

if x were known perfectly and w were zero.

If every component x, of x is measured with additive noise v i, the

control signal generated by the law(IV-5 would actually be

u = g(x + v t) (IV-7)

The closed-loop system would again be described by a vector differential

equation of the form

x = f(x,w,v,t) (IV-8)

and the true operating cost d would be measured by the expression given

in Eq. (IV-I).
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3. Optimal Estimation

Instead of feeding the raw state measurements to the optimum deter-

ministic controller, as was done in Eq. (I_7), one may assume that an

optimum estimation scheme is used to filter the measurements z. It is

well known from the theory of linear estimation that the optimum estimator

output is described by a vector differential equation of the form

A A
= f(Ax,x,v,t) (IV-9)

and it can be proven that the output of a nonlinear estimator would be

described by an equation of the same form. Consequently, the motion of

the closed-loop system comprising an optimum deterministic controller

connected to an optimum estimator would again be given by a vector dif-

ferential equation of the form

x = f(x,w,v, t) , (IV-10)

where x comprises the plant and estimator states x and xA.

One may approach the design of the controller/estimator pair using

increasingly realistic assumptions culminating m an optimum combined con-

trol and estimation scheme as discussed in Sec. 111, but in all cases the

operating cost given by Eq.(IV-I) will depend on the statistics of the

perturbations w and v.

In this section, we concern ourselves primarily with the perturba-

tions v generated by the instrumentation subsystem, the properties of

which are summarized by a vector s. This vector fully describes the

relevant performance characteristics of the measurement subsystem; that

is, the statistics of v. In most practical applications, the components

s, s i of the vector s would be the diagonal elements _ of tile measure-
A tz

merit noise covariance matrix R.

Note: The vector s may also characterize the topology of the in-

strumentation subsystem in the following manner: si = m may mean that

sensor i has been removed from the instrumentation subsystem. This is a

perfectly acceptable limiting process for the Kalman estimator in which

the absence of the ith instrument is accounted for by making the element

_2 of R equal to infinity. For other types of estimators this may not

be a permissible interpretation.
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To summarize, we may state in a general way that there exists a

functional relation

J(s) (IV-II)

between the operating cost of the system and the vector s characterizing

the performance of the instrumentation subsystem. This functional relation

depends on the way the sensor outputs z are used in the controller/estimator

block, but for given laws of control and estimation, J is uniquely related

to s.

C. Optimum Selection of the Instrumentation Subsystem

The ideal instrumentation subsystem is one which allows the estimator

to produce a perfectly accurate estimate of state; this usually implies

that the measurements must be noise free and that every state variable of

the plant be observable. Even if it were possible to perform perfectly

noise free measurements, the dollar cost of the instrumentation subsystem

might not be justified in relation to the operating cost J(s) it would

bring about.

A very practical problem of system design optimization is therefore

to minimize J(s) subject to an upper bound C on the dollar cost one is

willing to allocate to the instrumentation subsystem. Since the vector

s completely characterizes the instrumentation subsystem, the dollar

cost C is a function of s, C(s).

The optimization problem is thus summarized as

subject to

min J(s) , (IV-12)
S

C(s) < C (IV-13)

For technical reasons, or reasons of availability, the parameter vector

s t may be bounded; that is,

s _ S (IV-14)

Also, in actual design practice, one ordinarily does not have an infinite

range from which s can be selected; rather, there exists on the market a

finite number of instrument makes, each of which is characterized by a

fixed s i'
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The optimization problem of Eqs. (IV-12), (IV-13), and (IV-14) is a

standard nonlinear programming problem, which in principle can be solved

in a number of efficient ways. It is worthwhile to note that the problem

of optimally selecting the measurement subsystem has been reduced to the

standard format of the resource allocation problems customarily solved by

nonlinear programming techniques.

D. Special Case

1. Discussion

It is assumed that the general configuration of the instrumentation

subsystem has been selected and that the dollar cost C(s) can be expressed

as a sum of individual sensor costs

C(s) = E Ci(s i) i = t ..... n , (IV-15)
i

where the continuous variable s i is the noise power of the ith sensor.

Since in well-behaved problems, the operating cost J(s) is decreased when

the instrumentation subsystem cost C is increased, the solution will be

such that

2 C_(s_) = C (IV-16)
i

We further assume that s i cannot be made smaller than _i, the minimum

noise powel .btai,able for this particular class of sensors.

Under these assumptions and if the functions J(s) and Ci(s i ) meet the

required conditions of smoothness and convexity, the optimum solution is

given by Kuhn and Tucker conditions21which require that the derivatives

of the function

J(s) + k[ZCi(si) - C] + 2#i(si. - s_ i)
i

with respect to the variables s i be zero. The following necessary

conditions of optimality are thus obtained:

3J _C_

-- +k3s _ 0
3s i

IV-17)

E Ci(si) = _ (IV-18)
i

_i(s i - si) = 0 i = 1, ..., n , IV-19)

where K and _i are the dual variables associated with the constraints

C and s i > s i.
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If tile optimum solution is unconstrained for two or more sensors

> s j theni, j; that is, s t > s i and sj

_i = _j = 0 (IV-20)

and

3J 3J

3s i Os
J

bC i _Cj

3s. _s.
J

constant = -% (IV-21)

The economic interpretation of Eq. (IV-21) is that the marginal decrease

in operating cost -(_J/3C i) per additional dollar spent in reducing s i

should be tile same for all unconstrained sensors.

Note: The dual variables L and bei contain the following sensitivity

information:

k = - -- (1V-22)
AC

kJ
=

be i As__i

(_v-23)

that is, )v indicates how the operating cost J changes with the instru-

mentation budget _, assuming that this budget is used optimally as pre-

viously defined; be_ indicates how the operating cost would vary if a

higher-quality instrument having a lower limit s i could be found or

developed.

2. Numerical Example

The linear second-order plant shown in Fig. IV-2 is controlled by an

optimum sampled data controller/estimator designed to minimize the cost

fun c t i oil

8

J = E{O.O1 3_ u 2 + [x9(1)]2} (IV-24)
k=O k

The initial state is [0,0] and the noise powers of the measurements of

x (1) and x (2/ are o 2 and c_ respectively. The sampling time is 1 second.
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FIG. IV-2 SECOND-ORDER LINEAR PLANT WITH NOISY
MEASUREMENTS OF THE STATE VARIABLES x(I), x (2)

The operating cost J of this system is the sum of a deterministic

cost Jd (which is zero here) and a stochastic cost Js, the magnitude of

which is a function of the measurement subsystem parameters

= o-2
s1 1

2 (IV-25)S 2 = 0- 2

The stochastic cost ff (s s ) was computed for a range of reasonable valuess i' 2

of s 1 and s 2 with a program implementing the optimum laws of linear control

and estimation.* This functional relation was thereafter approximated by

fitting the following quadratic expression to the points perviously computed

_ _ 2 + 0.431 slsJs - 1. 216 s 1 + 2. 632 s 2 1. 185 s - 2. 392 s 2 2

(IV-26)

Curves of constant J computed from Eq.(IV-26) are shown in the s

plane in Fig. IV-3.

S
1' 2

Over the range sl, s 2 of interest, the dollar cost Cl(s 1 ) and C2(s 2 )

of the x (1), x (2) sensors are assumed to be

1
Cl(Sl) = --

S I

0. 543
C2(s 2 ) - (IV-27)

S
2

* For a detailed summary of these laws, see Sec. III and Bef. 5.
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FIG. IV-3 CURVES OF CONSTANT STOCHASTIC COST Js IN THE sI, s2 PLANE

An upper bound _ = 9.43 monetary units has been imposed. With given lower

bounds _1' !2 of the available sensors, the optimum design parameters s 1,

s 2 of the measurement subsystem are obtained from Eqs. (IV-17) through

(IV-19), which for the numerical example of interest, become:

1.216 - 2. 370 sl + 0.431 s2 - 2_ ---
2

S 1

_1 = 0 (IV-28)

2.632 + 0.431 sl - 4.784 s 2 -

_. 543

2
S 2

- _2 = 0 , (IV-29)

54

/a. 2(s2 - s 2 ) = 0 (IV-31)

_1(_ 1 - Sl) = 0 ,

1 0.543
-- + 9.43 , (IV-30)
s 1 s 2



Assuming first that the constraints il , !2 are sufficiently low, the

dual variables _1 and _2 are zero and the unknowns Sl, s2, and _ are given

by Eqs. (IV-28), (IV-29), and (IV-30) as

s 1 = 0.250

s 2 = 0. 100

k = 0. 0417

The stochastic cost Js(0.250,0.100) is 0.4806.

the sensitivity information

(IV-32)

The dual variable N carries

AJ s

AC

- 0.0417

If the upper bound on cost C were changed from 9.43 to 10.43, the stochastic

cost would decrease by approximately 0.0417.

_*e next assume that the most accurate x(l/-sensor available has a noise

power of _1 = 1/3 = 0.333. The design parameter s 2 is now given directly

by Eq.(IV-30) and the dual variable _ and _1 # 0 are obtained from the

pair(IV-28), (IV-29) as

s 2 = 0.0845

= 0.0311

_L1 = O. 1825 (IV-33)

The dual variable _2 of course is zero, since S 2 is not constrained.

Note that K has decreased substantially, which means that the re-

duction of operating cost per instrumentation dollar spent is now much

less. The stochastic cost d (0.333,0.0845) has increased to 0.4908.

The dual variable _1 measures the sensitivity of d with respect to a

relaxation G!l in the imposed lower bound; if _1 were reduced from 0.333

to 0.250 (the previous unconstrained case), the predicted cost reduction

would be

AJ s = 0.1825 0.833 = 0.0152 ,

whereas the actual cost reduction is only 0.0]02. The reason for the

lack of accuracy in predicting GJ s is the large increment Gs 1 chosen to

illustrate the technique.
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V OPTIMAL CONTROL OF MEASUREMENT SUBSYSTEMS

A. Introduction

This section considers an important class of problems known as meas-

urement adaptive problems, in which control is available over not only the

plant (i.e., the state equation contains a control variable) but also the

measurement subsystem (i.e., the measurement equation contains a control

variable). In the general situation the problem is shown to be a gener-

alization of the combined optimization problem. In the special situation

of linear systems, quadratic cost, and Gaussian random processes, it is

shown that the optimization of plant control can be carried out inde-

pendently of the measurement control optimization and, furthermore, that

optimization of the measurement control can be done a priori. Two

examples illustrating this latter situation are presented.

The adaptive systems commonly discussed in the literature are de-

signed to compensate for both uncertainty about the plant and environ-

mental changes by altering the contro] signals supplied to the plant.

In this paper a different class of adaptive systems characterized by the

presence of control action upon the measurement subsystem is discussed.

A paper by Athans and Schweppe 22 considers the design of an optimum

modulating signal in an estimation problem. The present paper is more

general than that work in that it treats the general control of the

measurement subsystem within a feedback control system.

The systems under consideration, referred to as measurement adaptive

systems, take the general form shown in Fig. V-l; the unique feature of

this block diagram is the control signal u M supplied by the controller

to the measurement subsystem. Feldbaum 23 has noted that a plant control

has the dual purpose of taking the plant to a desired state and obtaining

information about the actual state of the plant; the measurement subsystem

control, on the other hand, serves only informational purposes.

The problem under discussion is representative of an important class

of optimal decision processes not directly covered by Lhe classical theory

of optimal control. In the remainder, a mathematical formulation of the
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FIG. V-1 MEASUREMENT ADAPTIVE SYSTEM

general problem will be provided and a solution derived from combined

optimization theory %24 will be developed. Thereafter the computable

and practically important special case of a linear system with Gaussian

perturbations and quadratic performance will be treated in detail.

It will be seen that in this case the optimum measurement u m can be

determined a priori by solution of a deterministic control problem in

which the elements of the covariance matrix of tile state estimate enter

as state variables.

Some examples of measurement adaptive problems include: fielding

the optimum channel allocation among the various components of a meas-

urement vector when they must be transmitted over a time-shared communica-

tion channel of limited bandwidth, finding the optimum timing of measure-

ments when the number of possible measurements is limited because of

energy constraints, and finding the optimum trade-off between measurement

of range anti range rate in a radar system with given ambiguity function.
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Note that the decisions required in the above examples are dynamic in

nature; i.e., the optimum trade-off between velocity and position meas-

urement will generally vary in time, as a simplified version of the radar

example presented in the sequel shows.

A second large class of measurement adaptive problems arises when

the constraints on the measurement control are replaced by the cost of

making measurements. For example, in anti-submarine warfare, there is

a cost of alerting the enemy submarine every time an active sonar signal

is sent to measure its position and velocity. Examples abound of

operational-type problems in which it costs dollars and cents to make

measurements. In these problems the cost incurred by making measurements

is added to the customary cost of operating the system and it is desired

to find the optimum balance between the cost of measurement and the

saving in performance costs made possible by the measurements.

B. General Problem Formulation

In this section the general measurement adaptive problem is con-

sidered. In the presentation it is convenient to use the symbol Z k for

the time history of a quantity zi; i.e.,

Z k _ (z 0, ..., z_) (V=l

The symbol z 1 is used to represent the empty sequence.

i. Statement of the Problem

In the general case, the problem of measurement system adaptat

is formulated as follows:

Given:

the plant equation, written in discrete time as

xk+ 1 = fk(xk,u_,wk) k = 0 ..... N

the measurement equation,

z k = hk(xi,u_,vk) k = 0 ..... N

the probability densities

P(Xo) , p(wk) , p(v k) k = 0 ..... N

on

(V-2

(V-3

(W4)
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where the random variables w k and v k, which are white,

and x 0 are independent of each other; and the perfor-

mance criterion (cost function)

P) + 4(x N: + e z + % +,
=0

where the expectation is taken with respect to the

random variable x k.

(V-5)

Find :

the controls u_(Z k) of the plant and uM(zk_I ) of the measure-

ment subsystem (k = 0, ..., N) that minimize the performance

criterion J, subject to the constraints that

uP e _
(V-6)

(V-7)

YN+I _ q_ (V-8)

whe re

YO = g-l(U_ )

Yk+l : gk(yk, u_ u_+l) k = 0 ..... N - 1

p
YN + 1 = gN (yN ' UN

Several comments on this problem formulation are in order.

The form chosen for J was selected because it is the most

general form that can be handled by the dynamic program-

ming technique to be described. The purpose of the vector

Yk is to allow most, if not all, global constraints to be

converted into local constraints. An example of this

procedure is given later.
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2. Solution

The first step in the solution consists of defining

U k = , t+ k = k = 0 .... , N- 1 (V-9)

In terms of u k the measurement adaptive problem is very similar to the

combined optimization problem treated inBefs. 5 and 24, the major difference

being that the control does not affect the measurement eqnation in the

combined optimization problem. For this reason, the solution is only

outlined and details of the proof omitted. Because it summarizes all

information about the plant state xk, the key quantity is the information

state _k, defined by

_k _ P(Xk/Zk'Uk-l'U_ (v-lo)

for the measurement adaptive problem. A recurslve equation for the in-

formation state of the form

_k+l = Fk(_k,Uk,Zk+ 1 ) k = 0 ..... N - 1 (V-ll)

may be found by application of Bayes rule; 16 the result is shown in

Eq. (V-12) below. The probability densities P(Xk+l/Xk,U _) and

p(zk/xk,u _) can be obtained from Eqs. (V-2), (V-3) and (V-4).

M) =P(Xk+l/Z_+l,Uk,uo

P(X +I/Xk,u )P(xk/Z ,ukfl,Uo)dXk

x k

k = 0 ..... N-1

p(Xo/Zo,U
p(Zo/Z o, uMo)p(x o)

_0 P(Z°/X°'u_)p(x°)dx°

(V-12)
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In terms of _k' a dynamic programming algorithm can be derived for

solution of the measurement adaptive problem. First the performance

criterion is rewritten in terms of %k:

where

j = ¢(_) + E Lk(_k,. k) + e(_,_ N

£ lk(x k u_,u_+ 1)p(xk/Zk,U_-l,uMo )dx
k

(V-1 3)

k = O, ...,N- 1

_(_S' US [ls(Xs,U sv + J_ 4_[fs(Xs,UVN,wS)]P(ws)dws ]
N N

P(XN/ZN,UN-I,u_)dx N

Application of the principal of optimality to Eqs. (V-ll) and (V-13)

yields a recursive equation for the return function Ik(_k,y k)

= min (L k(_,u k) +
u k _LI, k k E {I_ +1 [Fk@k'uk'zk+l)'gk(yk'uk )]})

zk+ 1

k = 0 ..... N-1 ,

IS(_N,y N ) = min _@u,N)
Pc P

UN _N

YN+I _

(V-14)

Finally, since n0 is a function of uM0 [see Eq. (.V-12)]:

M) + i0(_ ° y0) } (V-15)J : min {_(u 0
M e M

Uo _0

C. Special Case

Because in the general case the information state _k is infinite-

dimensional, solution of the measurement adaptive problem is not practi-

cal without some sort of approximation. However, if the plant is linear,
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if the measurement subsystem is linear in the state and measurement noise

(but not necessarily the measurement control), if the disturbance and

measurement noise are Gaussian, and if the performance is quadratic in

the state and plant control with an additive measurement control cost

term, then the plant control policy can be determined separately from

the measurement control policy, which is. open-loop (that is, the optimum

measurements may be determined a priori). This special case is the

topic of the following section.

i. Statement of the Problem

In the special case: the plant equation is

xk+ 1 = Fkx k + Gku P + w k (V-16)

The measurement equation is

zk = H_ (u_)xk + vh , (V-17)

where Hk(u _) gives the relationship between the measurement matrix and

the measurement control. The probability density functions are

p(x O) = c 1 exp [(x o- Xo)r(Po/_l)-l(Xo - x o)

p(w k) -- c 2 e×p [_rQ_ h

p(vk) = c 3 exp [vZRkl(U_)Vk
(V-18)

A

where Bl(uk _) gives the relationship between the measurement noise and

the measurement control, and c 1 , c 2 , c 3 are constants of no consequence

here. The performance criterion is

d = E _il [x[Qkxk + pr )
4,+ (4)] +

o
.(V-19)

The plant control u_ is unconstrained; the constraints on the measurement

control u_ are given by Eqs. (V-7) and (V-8), with gk independent of

P and YN+I _ YN"u k
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2. Solution of the Problem

If the u_ were specified, then the above problem would reduce to

the linear combined optimization problem, whose solution is presented

in Nefs, 5, 25 and 26. The optimal control in that case is

U_ = -Kk_k/ k , (V-20)

where

K k (G_Pk+IG k + Bk)-lG_Pk+,Fk

Pk = Qk + F_Pk+IFk - p*k+l

k = N ..... 0 ;
(V-21)

and AXk/k, the optimal estimate of x k conditioned on Zk, is given by

A A A

xk/k = Fk_lXk_l/k_ 1 + Gk_lUP 1 + K k [z i - ttk(Fi_lAxk_l/k_l + Gk_lu{_l)] ,

(v- 22)

wh e l'e

A A A A

K k Pk/k-lflT(HkPk/k-lH_ + B k )
-1

A

and Pk/k' the conditional covariance of the error in the estimate of x k

given Zk, satisfies

A A A A A A

Pk/k = Pk/k - Pk/k-lHrk(ltkPk/k-lltrk + Bk)-lHkpk/k-1

A A A

Pk/k-1 = Qk-1 + fk-lPk-1/k-lFrk-1

k = 0, ..., N (V-23

The optimal performance is (see the Appendix or Bef. 5 for derivation :

A N

j = -r -- _[PoPo/_lxoPoxo + tr ] + Z A/_ k , (V-24
_=0
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where

A

Aft k = tr [Pk+lQk + P;+lPk/k] + lM(u_) (V-25)

The optimumA control law K k and the cost matrices Pk and P_ are

independent of B k and H k and, thus, are independent of the choice of u_.

Therefore, the plant control policy can be determined separately from

the measurement control policy. Since the choice of u_ affects onlyA

Pk/k and l_ in Eq. (IV-23), the computation of the optimum u_ is equivalent

to the following nonlinear, deterministic control problem: Minimize

N A

J* = _ {tr [P;+lpk/_] + lM(u_)) (V-26)
k=o

subject to Eq. (V-23) and the constraints given by Eqs. (V-7) and

(V-8). It is interesting to note that the matrix Riccati equation (V-23)
A

plays the role of the state equation, with the elements of Pk/k corre-

sponding to state variables. The results just presented can also be

derived by use of Eqs. (V-16) through (V-19) in Eqs. (V-11) through

(V-15); this derivation is presented in Appendix C.

Briefly, the procedure for solving this special case is as follows:

Eq. (V-21) is solved to obtain the optimal control policy (i.e., Kk)
,

and the cost matrix Pk" Then the deterministic control problem described

by Eqs. (V-7), (V-8), (V-23), and (V-26) is soived for the optimal

M It should be emphasized that bothsequence of measurement controls u k-
M

K k and u k can be determined a priori.

These results can also be used in systems with suboptimal control

and estimation of the form

,A
uP = -K k Xk / k

A
X'k/k

A A A
= Fk_iXk_i/k_ 1 + Gk_lUPk_l + K'k[zk - Hk(Fk_iXk_l/k_ 1 + Gk_lUPk_l)]

(V-27)

A
! t

Since Eqs. (V-27) use the suboptimum gains K k and Kk, it is only
A

necessary to use modified equations for Aflk , Pk, Pk, and Pk/_ which are

given in Ref. 5 and will not be repeated here.
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D. Examples

In order to demonstrate the principles developed in this section, two

illustrative examples are presented.

1. Example I

For the first example a simple problem, in which the number of

measurements is constrained, will be treated. Similar problems have

been considered by Kushner. 8 Given:

The scalar plant

xk+ 1 flxk + uP + w k

E(% ) = 0
A

E(w_) : qk
(V-28)

The scalar measurement subsystem

Z k = X k + Y k ,

A

E(v k ) = 0 , E(v_) = rk(u _) (V-29)

The constraint on the measurement control u_ is that M (where

M < N) measurements must be made. If a measurement is made at time k,

A A = (30
r k = T; if no measurement is made at time k, r k

The performance criterion is

J = E _ (qkx_ + rkuk ) + P_/+I
=0

It should be noted that the constraint on u_ given above is not a local

constraint. Let u_ = 1 if a measurement is made and u_ = 0 if not, then

define a new state variable Yk which obeys

Y0

Yk+l

YN

Yk + uM

M

k = 0, ..., N- 1

The constraint implied by Eqs. (V-31) is the same as stated above.
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As shown above, the determination of the optimal measurement policy

reduces to the following nonlinear, deterministic control problem:

Minimize
N

J* = _ (qk + f_Pk+l Pk )Pk/k , (V-32)
k=0

subject to*

-) A -iPk _ : (f_-,Pk-l/k-1 + _Sk-1)-l + _rk

k = 0 ..... N , (V-33)

where Pk/k is the conditional covariance of the error in the estimate of

x k, and Pk satisfies the equation

2 2 + rk)-tPk = qk + f_Pk+l - fkPk+l(Pk+l

k = N ..... 0 (V-34)

Consider this example with the following parameter values: fk = 0.9,
A

T = 1.0, qk = 1.0, P_+t = 1.0, r k = 1.0, N = 3, M = 2, P-l/-1 = 2.0,
A

for the two cases (a) zero disturbance noise, qk = 0; and (b) nonzero

disturbance noise, Ok = 2.

The results for Cases (a) and (b) are summarized in Figs. V-2 and

V-3. The solid lines represent transitions from k- 1 to kwhen a measurement

is made at time k; the dashed lines represent transitions from k - 1 to

k when no measurement is made at time k. The values below the nodes at

^ • the values above the nodes at time k correspondtime k correspond to Pk/k'

to the partial cost I* where
k'

kI_ _ _ (qi + f_Pi+l- Pt ) i/i (V-35)
i=0

It should be noted that certain transitions in the decision trees of

Figs. V-2 and V-3 are not admissible, since two measurements must be made

(i.e., M = 2). The minimum value for J* of Eq. (V-32) is shown circled

in the figures.

For this case the covariance equation takes a simpler form if it is written in terms of the inverse.
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Hence, the optimum measurement policy is: Case (a) Make measurements

at k = 0, 1. Case (b) Make measurements at k = 0, 2. These answers make

sense from an intuitive point of view. With no disturbance the measure-

ments should be made as soon as possible in order to remove the initial

uncertainty. On the other hand, when there is a disturbance present, some

measurements should be saved to determine the effect of the disturbance.

2. Example II
i

For a second example, consider the problem of terminal control

using radar-derived measurements of the system state. The system under

consideration, shown in Fig. V-4, is the discrete-time version of a

double integrator:

(V-36)
xk+ 1 = Fkx k + GkU _ + w k ,

wh e re

x k OS i t i OI 1

elocity_J

Y k

A

E(w k ) = 0 , E(w_wrk) Q

u_ ix k

T&--_967-t3

FIG, V-4 SYSTEM FOR EXAMPLE II

7O



The radar measures position by the time delay of returning pulses and

velocity by the Doppler shift of the pulses. For accurate position

measurement a short pulse is desirable; whereas accurate velocity in-

formation necessitates a long pulse. Hence, the measurement subsystem,

which measures both position and velocity, is governed by the observa-

tion equations:

Z k = X k + V k

A

E(v k) = 0 , E(vkv [) = R k = (V-37)

(_2)) 2

The effect of the measurement control policy is to vary the operating

mode of the radar and, hence, to change R_ in the appropriate manner.

It will be assumed that c_ I) and cr_2) , the standard deviations of the

position and velocity measurements, are related by cr_1)cr_2) = i. Since

a terminal control problem is being considered, the performance index

consists of a quadratic cost on the final position plus a quadratic cost

on the plant control:

_ N )2()2)
j : E + x 1+1 (v-3s)

k 0

First consider the situation in which the measurement subsystem is

constrained to operate in one of two modes at each time instant: in the

0 - mode, velocity is measured relatively well and position relatively

poorly; in the 1 - mode, vice versa. For purposes of exposition, it is

convenient to let the corresponding measurement noise covariance matrices

take the form

A

R° = , /71 = (V- 39)

1/ 8

A A

It is desired to find the optimal sequence of B_ and Bk1, where a is a

parameter.

71



For several values of c_ the optimum measurement control sequences,

as well as the optimal performances, were computed using forward dynamic

programming. The results are displayed in Fig. V-5, which also lists the

values of the other system parameters used and $ives the _erformances
with perfect measurements and using either all /_ or all R_. It is in-

teresting to note that, although the 1- mode is the best mode to use if

only one mode is allowed, in the two-mode situation the O-mode is used

more often than the 1- mode.

w
(.)
Z
¢1

n-
O 4
u-
n-
iiJ
flk

0

OJLY

/ :l 0,.[::0
[:o]I _" - "_-[o 8

N=8,r=0.2

_,_. Rk' ONLY

OPTIMUM

PERFECTLEAS.

f I II
1111111111111111111118

--1110000000000000000007--

I I 0 I I I I I I I I I I I I I I I I I I 6

--1111000000000000000005-

I I 00 I I I I 00000000000 O04

--I 000000000000000000003-

0000 O0 O0 I I 000000000002

--0000000000 I I I I I I I I I I I 1-

0000000000000000000 000
I I I I I I I I I i I

I 2 4 8 16 32 64 128 256 512 1024

FIG. V-5 RESULTS FOR EXAMPLE II
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Now consider the case of a continuous mode measurement subsystem,

which is described by

whe re

R_ = , (V-40)

1/u

0.000488 i _ i 256

Table V-1 gives the sequence of u_ computed using the gradient method,

which was initialized with the optimum "bang-bang" solution (i.e., the

solution when u_ is restricted to its extreme values). Note that the

only difference between the optimum "bang-bang" solution and the contin-

uous mode solution occurs at k = 0; furthermore, the improvement in

performance is only from d = 2.8658 to 2.8657.

Unfortunately, as is character-

istic of gradient methods, one can only

be sure that the solution displayed in

Table V-1 is a relative optimum. Indeed

using other initial sequences tile gra-

dient method converged to different

relative optima; none of which, however,

had a performance as good as that for

the sequence given in Table V-1. The

fact that the optimum "bang-bang"

sequence was used to initialize the

computations lends some credence to the

belief that the result obtained is the

Table V-1

OPTIMUM
MEASUREMENT

CONTROLS

0 82.8

1 .0.000488

2 256

3 256

4 256

5 256

6 0.000488

7 256

8 0.000488

absolute optimum.

E. Conclusions
i

In this section the concept of measurement adaptive systems was for-

mulated and solved in the general case as well as in the special case

of linear systems with Gaussian perturbations and quadratic cost. In

this special case, the resulting problem of solving for the optimum
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measurement control reduces to one of classical optimal control, where

the elements of the covariance matrix of the state estimate act as state

variables and the matrix Riccati equation plays the role of the equations

of motion.

As pointed out earlier, the problem of finding the optimal measure-

ment control policy for a linear system with Gaussian disturbances and

quadratic costs reduces to a nonlinear, deterministic control problem.

Two basic computational procedures exist for the solution of such a

problem: dynamic programming and the gradient method. Dynamic program-

ruing, because it is a global optimization procedure, will give the

absolute optimum if it is computationally feasible; but because it is

global, it suffers from the curse of dimensionality. The gradient

method, because it is a local optimization procedure, is likely to be

computationaily feasible for more complicated problems than dynamic

programming, but can be only guaranteed to give a relative optimum. The

above comments apply, of course, to any deterministic control problem;

what'makes tile problem of finding measurement controls nontrivial, if

the second example is any indication, is the prev.alence of relative

optima. This example also illustrates a possible escape from this

dilemma: Use dynamic programming on a simplified version of the prob-

lem and then use the gradient procedure on the complete problem to

refine the control sequence obtained by dynamic programming.
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VI APPLICATIONS

A. Introduction

The research efforts carried out under Contracts NAS 2-2457 and

NAS 2-3476 have been predominantly theoretical in nature and no

attempt has been made to apply the results obtained to a specified prac-

tical problem. However, in order to ensure that the research carried out

would eventually respond to practical needs, a minor effort was devoted

to the study of aircraft avionic systems, air traffic control procedures,

and V/STOL aircraft control requirements. Rather than describe in detail

the functioning of present and projected systems and procedures and to

suggest how the techniques developed might be used to improve specific

items, we prefer to discuss in a general way the applicability of these

techniques to the problems of system design and operation. It is stressed

however, that the detailed study of such practical applications as air-

craft avionics systems has suggested the general conclusions to be reportec

in this section and has strongly influenced the design methodology for

control and guidance systems required to operate in the presence of un-

certainty, as discussed in Secs. II and III.

Looking more closely at the theory developed, one may divide it into

two parts as follows:

(1) The analysis of the effects of uncertainty by applying

sensitivity theory to the cost function and the equations

of motion--This part allows one to assess in the simplest

possible manner the degrading effects of plant and sensor

noise and suggests how the system should be "adapted" to

parameter uncertainties.

(2) The synthesis of systems where the degrading effects of

uncertatnty are minimized--For this part, several com-

plementary approaches of increasing complexity can be

taken, i.e.,

(a) Go from an open-loop to a closed-loop system

(b) Attempt to estimate imperfectly known parameters

and adapt the law of control accordingly
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(c) Include the stochastic and dual effects, which

tend to shift the nominal trajectory into a region

of space where the intensity and/or the degrading

effect of plant and sensor noise is reduced.

We also wish to stress that, although primary concern was given to

guidance systems and control systems operating on physical plants, the

theories evolved in the course of the study apply equally to problems of

system planning and operation involving nonphysical plants, such as manage-

ment processes, planning of experiments, establishment of system evaluation

procedures, design of systems containing humans in a decision function,

allocation of R and D funds, etc. Tile reason for this general applicability

is that the mathematical models for the equations of motion (state transi-

tion equations), tile cost function and the uncertainties involving the

model, tile forces affecting tile transition equations and the measurement

of state are very similar, if not identical, for all tile problem areas

mentioned above.

B. I)esign of Guidance and Control Systems

Under this heading, we include tile real-time systems where a given

physical plant, e.g., aircraft, space vehicle, or tracking antenna is to

be controlled optimally. Ill applications of this kind, it is common to

have several separate control systems, the functions of which are entirely

uncoupled or loosely coupled. For example, in an aircraft application,

we may find separate systems for automatic navigation, attitude/altitude/

beading control (autopilot), cruise control, and automatic landing. These

systems are usually treated separately because tile objectives (cost func-

tions) are quite different. The main objective of precise navigation is

collision avoidance; the benefit .!erived from the autopilot is ease of

control and smooth flight; the purpose of cruise control is fuel economy

and concommitant maximization of payload; automatic landing, finally, al-

lows the airplane to reach its destination under a'll weather conditions.

In situations such as these, the techniques developed are applied in-

dependently to each of the systems discussed. The most convenient and

logical step-by-step procedure to apply tile techniques was discussed in

greater detail in Sec. II and is briefly summarized here as follows:

(1) Optimize the control system, assuming a perfectly known

model and no plant or measurement noise, by means of

tile well-known deterministic optimization procedures.
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(2) Investigate the sensitivity of the cost function with

respect to these three classes of uncertainty using

(in general) second-order sensitivity theory. This

sensitivity analysis determines approximately the

information requirements, that is, the accuracy of

the model, the magnitude of the perturbations that

are tolerable, and the state-variables that must be

estimated, together with the accuracy required.

(3) Estimate the utilization of this information by going

from an open-loop configuration to a closed-loop con-

figuration; if necessary, supplement the closed-loop

configuration by adaptation. Finally, for certain

guidance and control problems, compensate for the

stochastic and dual effects by shifting the nominal

trajectory.

It is clear that the analysis part of paragraph 2 and the synthesis

part of (3) are often intermixed. For example, to analyze which state

variables need to be measured, a closed-loop configuration must be as-

sumed; the closed-loop configuration is the first step of the synthesis

procedure.

C. Reliability Considerations

The design and evaluation of a system from the point of view of com-

ponent and subsystem reliability can be performed in much the same way.

First, one obtains the performance, assuming that all the components are

functioning properly. Next, one allows the components to fail and calcu-

lates the performance of the partially failed system. These failures can

be viewed as large parameter changes in the differential equations de-

scribing the system. If one associates probabilities with these component

failures, then the statistics of the cost or performance function can be

derived. This completes the analysis half of the procedure.

The aim of the synthesis part consists of minimizing the performance

degradation caused by component malfunctions. This can be accomplished

during the system design stage by use of more reliable components or by

component duplication. The sensitivity of the expected performance with

respect to the various component failures identifies those components that

should be made more reliable. From this approach, it is apparent that re-

quiring uniform component reliability is not in general a good practice;

for some components, a reliability of 0.9 may be adequate, whereas for

others 0.999 may not be sufficient.
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Instead of increasing the reliability of the key components in the

design state, one may also minimize the degrading effect of a component

failure during the operating stage by appropriate control action. After

a component failure has been detected, the controller maximizes perform-

ance subject to the equations of motion of the partially failed system.

This approach can be viewed as a form of adaptive control. As a simple

example of this, one may consider a linear control system with quadratic

cost function where the state is observed by a set of noisy sensors

SI, ..., S n. The estimator gains are determined by the covariances of

these sensors. Now, assume that one sensor S i fails, meaning that its

covariance becomes infinite.. If this fact is detected, the estimator gains

are changed and the estimation process remains optimal for the partially

failed instrumentation system. If the failure is not detected, the esti-

mator output may contain unacceptable errors. On the other hand, the

system performance obtained with the adapted estimator may be unacceptable,

in which case the sensor S i must be duplicated or additional variables

must be measured.

D. Design of Experiments

Tile purpose of designing an experiment is to acquire information in

order to improve performance. Wind-tunnel tests, for example, provide

aerodynamic parameters, knowledge of which is necessary to design, among

others, an efficient autopilot. In other words, knowledge of these

parameters is important only to the extent that it influences the auto-

pilot design, and not per se. The ultimate aim, namely system performance,

fixes the information state that must exist at the end of the experiment.

The problem then is to get from the present information state (initial

uncertainty about the aerodynamic parameters) to the required information

state by a suitable selection of experiments; the nature and sequence of

the tests may be viewed as the control variables. Since experiments are

costly, it is reasonable to select, among the many feasible sequences of

tests, that which provides the desired information state with least cost.

This is a variational optimization problem in which the state variables

are the conditional probability density functions characterizing the in-

formation state and not the customary energy-storage output or resource

variables.

The optimum allocation of research and development funds represents

a very similar class of problems. The purpose of initiating an B and D
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project is to improve the information state with the ultimate aim of

achieving desired system performance. Again, this ultimate aim deter-

mines the required information state which it is then desired to reach

with the least expenditure of funds, or in least time, etc.

The analytical foundation of the applications discussed in this

paragraph are given in Sec. IV entitled "Optimum Control of Measurement

Subsystems."

E. Systems Containing Man in a Decision Function

The techniques discussed in this report were primarily aimed at

fully automatic dynamic systems. In principle, the key ideas can be ap-

plied to systems containing humans responsible for making decisions. We

do not consider in this paragraph situations where the "transfer function"

of man is of concern, for example, manual tracking applications; rather,

we concern ourselves with situations where the time scale is such that a

rational decision can be made based on the information made available to

the human decision-maker. The duties of an air traffic controller might

fall into this category.

One of the difficult design problems arising in systems of this kind

is the selection of the information that must be made available and the

manner in which it should be displayed. The techniques discussed in this

report can be applied to this problem as follows:

(1

(2

(3

Determine the system performance assuming perfect infor-

mation and perfect decisions.

Determine the expected system degradation for imperfect

or incomplete information, but perfect decisions. This

determines the required information sources and displays

assuming a perfectly trained and intelligent crew.

Determine the expected performances with an actual crew,

the decisions of which are not always perfect. Compen-

sate for this imperfection by providing more information

or by using automatic data-processing aids to improve

the quality of the decisions.

F. System Planning Problems

Planning the evolution in time of a system or facility can be ac-

complished using the techniques described in this report. To illustrate

what we mean by a facility required to evolve with time, we may think of
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the deep-space communication network operated by the NASA. The perform-

ance (e.g., bandwidth) of this facility is required to improve with time

in accordance with the mission planned.

The problem of the planner is to add equipment (e.g., antennas) of

characteristics to be determined at suitable time intervals in the future;

these added components become the state variables of the problem. The

performance function is a measure of how well these added components

satisfy the demands placed upon them over the planning interval, which

may be of the order of 20 years.

Tile first step in the procedure consists of finding the character-

istics and implementation schedule, assuming

1)

2)

Perfect knowledge of the demands placed upon the system,

e.g., missions taking place during the planning interval.

Perfect knowledge of the technical and economic character-

istics of forthcoming equipment generations. In the second

step, the degrading effect upon performance of uncertainty

(demandand equipment characteristics) is analyzed. It

must be kept in mind here that the planning process is

characterized by a decision rule (i.e., law of control)

because the planning decisions are reviewed repeatedly

to account for the information acquired in the meanwhile.

3) l)uring the third step, the decisions are modified to

minimize the degrading effects of uncertainty. It seems

that the most common protection against these degrading

effects is to provide for enough intermediate decision

options. In the context of our planning example, this

might mean that the purchase of communication facilities

believed to be necessary for future missions should be

delayed, even at the cost of more expensive procurement,

until the exact nature of the missions and the character-

istics of forthcoming equipment generations is firmly

established.
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APPENDIX A

SENSITIVITY FOR SYSTEMS WITH STATIC COST

FUNCTION ANBALGEBRAIC EQUALITY CONSTRAINTS

1. Problem Formulation

Given: the scalar cost function

J = F(x,u) (A-l)

of the dependent and independent (control) variabies x and u, both of which

are vectors of dimension n and m, respectively, and the n equality con-

strain.ts

g(x,u,p) = 0 (A-2)

where p is a parameter vector,

Find:

(1) The sensitivity relations between the problem

variables x, u and p

(2) The first-order sensitivity of the cost function

F with respect to x, u, and p

(3) The second-order sensitivity of the cost function

F with respect to x, u, and p.

In the interest of keeping the results simple, it is assumed that the

variables x and u are not subjected to inequality constraints of the form

• < U
x i _< X i , uj _ j

If inequality constraints of this type have a dominant effect upon the

problem solution, they may be taken into account by adding appropriate

penalty terms to the cost function (A-l). It is furthermore assumed that

the functions F and g are continuous and twice differentiable with respect

to their arguments.
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2. Sensitivity Relations Between the Problem Variables x, u, and p

It is assumed that a solution x*, corresponding to the nominal control

vector u* and the nominal parameter vector p*, has already been obtained:

g(x*,u*,p*) = 0 (A-3)

It is now desired to determine the changes Ax which would result from small

changes Au and Ap away from the nominals u* and p* A Taylor-series ex-

pansion of gq. (A-3) provides this relation:

Au gpApg(x* + Ax,u* + Au,p* + Ap) = 0 = g(x*,u*,p*) + g Ax + g +
x

In view of Eq. (A-4), it follows that

(A-4)

g_Ax + g Au + gpCp = 0 (A-5)

Ax = -g Jg,Au- _ g_lgpAp , (A-6)

where tile .la(:obian matrices g_, g,, gp are evaluated at. the nominal solu-

tion x*, ll*, p* For convenience ot' notation, Eq. (A-6) is rewritten in

terlns of the. settsitivity m_ltrices S and St, as

with

Ax = S Au + SpAp , (A-7)

- _g (A-8)

-1 (A-9)S = -g_ gp
P

Ex amp l e :

For the aircraft cruise control problem also discussed in Sec. 1I,

the cost function F is given by

CV

crT
F =

cM

specific fuel consumption = 0.29 10 -3 lb sec-l/lb
of thrust,

(A-IO)

T = thrust, in [b, here the dependent variable x I
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c = speed of sound = 968.1 ft/sec at the prescribed
altitude of 50,000 ft

M = Mach number, here the independent problem variable u.

The equality constraints are:

kC L _-
2

pc 2M2
S -mg + T sin (c_ + _) = 0 (A-If)

c 2M2
(C D +k27)CL a2)p--N- T cos (a + ¢) : 0

0 a 2
(A-12)

where

CLa,CDo and

: angle of attack, here the dependent

variable x 2

¢ = fixed angle of 0.05 rad given by air-
craft geometry

mg - weight of aircraft, nominally 34,000 lb;

here, mg is a variable parameter Pl

S = wing surface, nominally 530 ft2; here S

is an uncertain parameter P2

= aerodynamic coefficients the variation

with M of which is given in Fig. II-1

k = constant = 180/7 = 57.2947795.

At the operating point defined by

M = 2.683

T = 6133 lb

: 5.716 10 -4 rad

F = 6.8474 10 .4 lb/ft _ 3.423 lb/mile

the sensitivity matrices N and S are
u p

[ J2. 859 10 3

S u : Sp

-2. 377 10-

F 6. 536 10- 2

k1.690 l0 -a
7.378 6]

-1. 084 10-
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The interpretation of these matrices is as follows:

For S ; a l-percent change in Mach number (AM = 0.02683) requires a

change of thrust AT of 2859 0.02683 = ??.2 lb.

• =
For Sp, a l-percent change in weight (Amg 340) requires a change

of thrust AT of 0.0653 340 = 22.2 lb.

3. First-Order Sensitivity of the Cost Function F with

Bespect to x, u, p

For sufficiently small variations Au and Ap, a Taylor-series expansion

limited to the first term of Eqs. (A-l) and (A-2) yields for the nominal

x, u, and p:

AF = FAx + F Au (A-13)
x u

g Ax + g Au + gpAp = 0 , (A-14)

where the row vectors F and F and the rectangular matrices gx, gu, andx u

gp are the partial derivatives _F/_x2, _8F/_uj, _gi/-dxj, -Sgi/_duj, and

c)gi/_pj evaluated at x, u, and p. Elimination of the dependent variation

Ax from Eqs. (A-13) and (A-14) yields

AF = (F - F g_lg )Au - F g:lg A (A-15)
u u pp

In tile interest of more compact notation, the Lagrangian _(x,u,p) will be

defined as

= F(x,u) + Lrg(x,u,p) (A- 16)

where the dual vector K of dimension n is defined by

F (x,u) + Lrg (x,u,p) = 0 (A-l?)

With tile two definitions of Eqs. (A-16) and (A-17), one can prove immedi-

ately that an alternative expression of Eq. (A-13) is

where £ and
u p

AF = _.Au + _pAp , (A-18)

are again row vectors.
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If the control u selected for the nominal is an optimum control (i.e.,

minimizes the cost F), the sensitivity of AF with respect to &a must clearly

be zero. This is an alternative way of stating the well-known necessary

condition for an optimum:

£ = 0

Example:

For the aircraft cruise control system under discussion, the

Lagrangian function _ is

£
_T _ pc2M 2--+ L CLa_cM 1 2

--S- mg+ T sin (a + _)]

E c 2M2 )]+ k277C L a 2 ) p --S - T cos (a + e (A-19)
+ 722 COo a 2

At the operating point defined by M = 2.683 .... the partial _ is zero
u

indicaLing that the chosen value of M minimizes the cost function F. l he

partial _ corresponding to this operating point is
Pl

= -A = 7.29 10 -9
Pl 1

This means that a 1-percent increase of weight (Amg = 340 lb) causes an

increase in F of 2.48 10 -6 lb/ft, equivalent to a percent increase

100 _F/F of 0.36 percent.

4. Second-Order Sensitivity of the Cost Function F with

Respect to x, u, and p

A Taylor-series expansion limited to the second term of Eqs. (A-l)

and (A-2) yields

1 1

AF = FAx + F Aa + - AxrF Ax +--AuTF Au + AxrF Au (A-20)
x 2 xx 2 ....

For the ith equality constraint, a similar Taylor-series expansion yields

• 1 i

g Ax + g Au + g; p +- Ax +_ A,.Tg,A.
1

= 0 (A-21)
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With the definition of the I_agrangian _ in Eq. (A-16), multiplication of

each equation of

yields

A-21) by L i and addition of these equations to (A-20)

1 1 r£AF = E Au + E Ap + -- Axr£ Ax + -- Au Au
" P 2 x_ 2 ""

1
+ --Ap T,_ppAp + Ax rE Au + AuTE pap + Ap T_, Ax

2 xu u px

(A-22)

"File dependent var ation Ax is expressed in terms of the independent varia-

tions At, and Ap through the sensitivity equations

Ax = S Au + SAp
u p

(A-7)

Substitut, ion of this equation into Eq. (A-22) yields

1
AF = £ Au + i} Ap + --Aur(E + Srf} S

II P 2 R tl /2 X I II

T 1

+ 2S;L )Au

I
+- Apr(Ep + St1 ', S + 2_ S )Ap

'7 p p x x p p x p

1:,, + .sr£ _s + _£ s + sr£r )Ap+ ,/_u T( P u xx _, xu p px

For more (:ompact notation, this equation is written as

AF = E.Au + 1',/% + -2 Au ..Au + --2 ApE yap + A/z T_*upAp

where the matrices _I}_, ,[_,* and E* are given by
u' pp_ up

1}* E + sri} S + 2srE
u u tl u u x x la tl x u

E* = E + srE S + 2E S
pp pp p xx p px p

(A-23)

i:* £ + srE s + Er8 + srE r
u p u p u x x p x u p u p x
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Ex amp l e :

For the cruise control problem under discussion, the matrices ,u'
_* and _* are given below for the operating point defined byup pp

M = 2.683 ...

_* = 2.199 10 .4
uu

_* = [-5.745 10 .9 3.685 10 -7]
up

PP

2.151

-1.380

10-13

lO-il
-1.380 10 -ii]

8.854 10 -l°

Using the perturbation model of Eq. (A-23) for a variation Amgof 3400 lb

(10 percent), we calculate a variation of cost

AF = 26.14 10 -6

The accuracy of this model was checked by directly computing she cost F

for the new weight of 37400 lb. The true increase in cost was found to

be

AF = 26.22 " 10 .6

5. Applications of the Second-Order Perturbation Model

The perturbation model of Eq. (A-23) can be used for numerous purposes

discussed elsewhere in the report--see notably Sec. II. The following two

applications are singled out here in view of their great practical usefulness.

6. Optimization by Smali Changes Au of Control

Expression (A-23) may be used to advantage to optimize a real-time

control system with little computational effort, once the optimal solu-

tion u ° corresponding to the nominal parameter value pO has been obtained.

Instead of recomputing a new optimal control with the original optimiza-

tion equations every time a parameter change Ap occurs, it is usually

much more efficient to compute the optimum variations Au by minimizing

Eq. (A-23). The minimizing value of Au can be explicitly written as

Au = -_*-i_pAp_, = Khp , (A_24)
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where the matrix K is the optimum law of control for small variations.

Consequently, as long as the parameter variations remain sufficiently

small, optimization can be performed simply by adding the correction Au

of Eq. (A-24) to the nominal u °

Examp l e :

For the cruise control example under discussion, the control matrix

K is

K = [2.611 10 -5 -1.675 10 -3 ]

7. Waste Caused by Inaccurate Information on p

Equations (A-23) and (A-24) may also be used to assess the unnec-

essary cost (or waste) caused by inaccurate information on p. This waste,

if expressed in terms of the inaccuracy Ap, indicates the relative impor-

tance of measuring and telemetering the parameter p accurately.

The practical situation of concern in this section is shown in Fig. A-1.

This system is subjected to the input signal u + Au put out by the con-

troller. ]'his signal would be u if the parameter value fed to the con-

troller were p; since in actuality the controller receives p + Ap, its

output will be u + Au. The relation between u and p is the "law of

contFo [ _,

u = _(p) (A-25)

p+Z_p p

u = cp(p) -_ SYSTEM

TA--'_42522-3R

FIG. A-1 STATIC CONTROL SYSTEM RELATING THE CONTROL u

TO THE PARAMETER p (Ap is a measurement inaccuracy

causing control deviation A u)
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implemented in the controller.

Gu may be approximated as

For small changes Ap, the resulting changes

Au = _pAp , (A-26)

if the function _ is sufficiently smooth about p.

Equation (A-23) next relates the approximate cost variation _F to

the control deviation Au by

AF = £ Au + 1Aur£* Au (A-27)
U 2 tilt

The variations Ap are omitted from Eq. (A-27), since the system receives

p and not p + Ap.

If the law of control of Eq. (A-24) is optimum in the sense that u

minimizes F for p, then the term _ is zero and the cost variation is
u

AF 1 Aura. Au , (A -°_
2 uu

where Au is related to Ap by Eq. (A-24). The combination of Eqs. (A-28)

and (A-24) yields

AF = Aprl-_p

where the matrix _ is given by

(A-29)

1
= - KrE_ K (A-30)

2

If' the inaccuracy Ap is a random time-uncorrelated measurement noise

of zero mean

A A

Q = E{@@ r} , (A-31)

where the symbol E denotes expectation, then the average cost increase

E{AF} caused by the random process fSp is

E{AF} = E .. Y. _ = _. _ _ jQ (A_32)j iJZSPiAPJ i j i ij
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This equation is written compactly as

A
E{AF) : tr[_O] , (A-33)

A
where the symbol "tr" denotes the trace of the matrix _Q.

Equations (A-29) and (A-33) readily point out the deleterious effects

of bad measurements upon cost. ttence, they allow the system designer to

allocate high-quality instruments and telemetry links to tile sensitive

measurements and vice versa.

Ex amp I e :

For the aircraft cruise control system under discussion, tile matrix

_-_ is

D  83,012]
-4.813 • 10- 3. 088 10-1°

This means that a 2-percent measurement error in the actual weight

(Amg - 680 lb) will lead to an unnecessary increase in cost of

or in percent

AF = 3.44. 10 -a lb/ft

AF
100_ = 0.009 percent.

F
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APPENDIX B

DERIVATION OF THE EQUATIONSFOR SECTION III

A

i. Computation of E[(x - _)/Z] and P

A

In this portion approximate equations for E{x - _/Z} and P will be

derived. From Eqs. III-1) (III-2) and (III-6)

x(t + At) - i(t + At = x(t - Ax(t)4- jat [x(t + _-) - Ax(t + T)]dr
o

i A A

= {fix t] - f[Ax t] - _ f°.xoP + KJl[x(t) - xA(t)]}At

t A+ w(t + v_)dT + K _-- v(t + v-)dr + o(At)
o T

(B-I)

From Taylor's series expansion

1

f(x) - f(Ax) _ fO(x - Ax) + _ f° o[(x - Ax)(x - Ax)T] (B-2)

However, E(w/Z) and E(v/Z) are zero; hence

1
E[x(t) - Ax(t)/Z(t)] = lira -- E[x(t + At) - xA(t + At) - x(t) + Ax(t)/Z(t)]

_t_0 At

A

= (fo _ Ktt)E[x(t) - Ax(t)/Z(t)]

E[x(0)] = xA(0) and, therefore, E[x(t)- Ax(t)/Z(t)] is zero. Since

E[fZXtw(t + 7)dt" fat w(t + 7)dz/Z(t)]
0 0

(B-3)

and

A

= Q(t)At + o(At) , (B-4)

A (B-5)
EIJ_' "(t + T)dT f&t v(t + _)dT/Z(t)] = B(t)At + o(At) ,

o 0
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it follows that

l(lira -- E{[x(t + At) - Ax(t + £t)] [x(t + At) - Ax(t + [At)] T
nt_o At

Ix(t) + xA(t)] Ix(t) - Ax(t)]W/z(t)})

A A A A A AAA

(f_ - KH)P + P(f_ - KH)T+ Q + KRK T (B-6)

2. Computat ion of d

a. Statement of the H-J Equation

To describe the control system it is convenient to use the combina-

tion of x and x _ - x as state. An equation for x may be derived from

Eqs. (III-1) and (III-6):

A A l a

2*

A A 1 A

= (f_ - Kfl)_ + Kv = w + -f_' o(P + x_x"r)2

A

E[_'(O)] = 0 E[7(o)Tr(o)] = P(O) (B-7)

In ter,ls of x and _ the tlamilton-,lacobi equation for the return fuilction,

l(x,'x', t) is*

_f A 1 A )_0 = _t + l + [ x f + I''_x ( x° - KH)'x + "_ f2xO(D + ._,'_T

] A AAA

+ - t,. [(t - 2IG, + 1.... )q + I.... _RA'r]
xx xx xx

I(x,_d,T) = q_[x(T),T] (B-8)

The second partials are characteristic of stochastic problems and do not

appear in the deterministic problem. Performance is given by

d = E{I(x,"_,O)} (B-9)

No minimizati(m appears because of the fact that the controller is fixed.
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b. Approximate Solution of the H-J Equation by

Perturbation Theory

We assume a solution to (B-8) that is quadratic in _ and the per-

turbation x - x °"

I(x,_,t) = Jd(t ) +ds(t ) + kT(t)[x _ xO(t)] + _w_

+ [x - x°(t)]rP(t)[x- x°(t)] + 2[x - x°(t)]rp(t)_ + x_rp(t)_

where Jd is the deterministic cost from time t:

Ja (t) = fr l(xO,uO,7)dT + O[xO(T),T]
t

The desired partials of I are

I =
t

+ o) (_r)a + )_ - LTf° (_r _ 2f°rp)(x _ x + -

+ (x x°)rb( x _ x°) + 2(x - x°)T-fi_" + _xTt_

X _ O)I _ _r + 2(x x P + 2xP r

I _ = X r + 2(x - x°)P + 2_P
x

Now let

and note that

H(x,u,h,t) 6 l(x,u,t) + kf(x,u,t)

u = uo , K[(xA - _) , (x x°)]

foT_

(B-10)

(B-I1)

(B-12)

(B-13)

(B-14)
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then, by Taylor's series expansion

- H2K + f°rp)(x - x °) + (-HUN + 2/°rp)_

o [1 1 1 KTHO 1 KTHfK + p(fo x f OK)+ (x - x ),r H ° __ H°K + - -_x, 2 -5 2

+ (s°- s2K)e](x-o)

[,+ 2(x- x°) r --2

l + Ixf -_ I-#° + (lq2

H°"K - -2 K ft°_ K- Pf °K + ( f o _ f oK) r x

Use of

I_ 1 KrHO K + prS°K + (S2K)rpI_
m

+ "_T 2 uy

(B-15) and (B-12) in (B-8) yields

[( . A "AAA l(,_rf): _]0 : (Jd + ft° - xri°) + ): + tr P- 2P + P)Q + PIOIKr + _ .

(B-15)

Ip 1 1 1 1 KrHoK + p(fo + f_K)+ (x - ,<')_ + _ .o _-2H°J - -_KT"2x+ 7

+ (fo _ fOK)Pl(x _ x o)

[p f °K)r_ _
1

+ 2(x - x°) r 1 tt ° g + grft ° K- Pf°g + (fo _ + p(fo _ KH x

A
.,o 1 KrHo K + P--rf°K + (S°K)r-fi+ _(f_' -KfI)

+ xT 7 uu

A A _0 ] It+ (]o_ I01) + (fo_ m)P +- ("krf)°_ x
2

If it is remembered from Eqs. (B-11) and (B-13) that

Jd = -l° = -H° + xrf°

(B-16)

{B-17)
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then the following equations may be written by equating the coefficients

of various powers of (x - x °) and _ in Eq. (B-16); final conditions are

obtained by series _xpansion of Eq. (B-8) and comparison with Eq. (B-10):

I _ A MAA 1 '"_ A ]-) = tr (P- 2P + p)Q + t_ _ + - (XTf}op_._ J2 Js(T) = 0 (B-18

-L = (H ° - H°K) T L(T) = {I)2 (B-19

-X = (fo_ _ KH)TX _ (HOK)TN(T) = 0

-p 1 KTHo 11 H° 1 H° K + KTH° K= P(f_ - f_K) + (f_ - f_K)rP + ......
2 xx 2 xu 2 _ 2 _

(B-20

1
= -- (I) °

P(T) 2 _ (B-21)

-" a 1 1
( o o r_ Ho_p = -_(fo _ KI-]) + fx - K + KrH_Kf K) P- Pf°K- _ xu "2

"Xa

-p

P(T) = 0 (B-22)

_- a A _ oK r_ 1p(fo _ KH) + (f° x - Kft)P _ Prf:K - (f_ ) + - KrH°K
2

i -x,

+ _ (Xrf) o (B-23)
2 xx

The performance d is given by [see Eq. (B-7) and Eq. (B-10)].

j = E[i(x,Ax,O)]

T A
h _ xo _ _ . - _ xo= Ja(t) + kr(O)[x(O) (0)] + lAx(o) x°(O)] P[x(O) (0)]

+ tr _P+ 2PP + 2PP] + _ tr P- 2P+ P)Q + PI,£BKr +- (xrf): dt2 x

(B-24)

This equation may be reduced to the Eq. (III-11) for d given in the main

text with the aid of Eqs. (B-21) and (B-22) and considerable algebra.

Since this algebra is essentially the same as that given in Appendix C

of Ref. 10, it will not be repeated here.
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3. Program

Figure B-1 is a flow chart of a computer program utilizing the

sensitivity and optimization theory presented in Sec. III. The equations

solved in the various subroutines of the program are described in this

portion of the appendix. Most of these equations are general for any

system; some, however, vary greatly as a function of the system, and in

these situations the equations given are those corresponding to the linear

control problem:

x = F(C_)x + G(C_)u

d = fr(xrQx + urRu)dt + x T T) Px(T)x (T)
0

(B-25)

where F and G are linear functions of _, i e.,

F(i,J) = yo( i ,j

q

+ _ f_:,k,j)¢Z(k}
k=l

(i( _,J ) = G o(i,j

for /] plt |'ameto rs.

a. Mode Indi caLors

q

+ _ ,(i k ) (k)_, J_ , ,; _ (B-26)

The mode of operation of program is (let, ermined by _he following

indicators, which are inputs.

No Measurement T 1

Noisy Measurement y = 1

Perfect Measurement T = 0

Sensitivity bb = 0

Opt imi zat ion _J = 1

Non Adaptive _ = 0

Adapt i ve _ = l

q) 0

= 1

= 1
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I
I

INPUT;

J -..-0

t

J'_J; [J _0

t
STATE EQUATION

t
J_J + [x(T),T]

t
WRITE:

u(t), x(t), J

ESTIMATION [EQUATIONS

SENSITIVITY EQUATIONS

t

I FORWARD ISENSITIVITY EQUATIONS

t

IJ-J_ Jtr{ Pa(O) [Pa(O) + (l_i_)Sa(O)] }

I

I
Pa(t) _ (1 --_)Pa(O)

Pa (t) _ P,a(t) _ 0

WRITE: Px(t), P*(t) /

Px(t),Pa(O),Px(O), Sa(1), J J

0 = 17 NO

FORWARD JADJOINT EQUATIONS

BACKWARD IADJOINT EQUATIONS

I
FIG. B-I FLOW CHART FOR PROGRAM
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b. Partial Derivatives

In the various equations partial derivatives of f and H appear and

it is necessary to write subroutines to compute these derivatives. For

the linear problem they are

f_ = F , f_ = G , H 2 = 2x°rQ + NTF

Ho 2u°rB + krG , tt2 = krf$ , H ° = 2Q ,u xx

tf_ = H°x, = 0 , H °.. 2R

_o (T)
xx = 2P x

_°(T)
x

T)

= 2xor(T)p (T)

B-27

and

fo( i , j )

H°c)2 , J )

n

f ( i j ,k )x(k) +
o.x

k=l

n

_k F(k, i,j)
k=l

m

E
k=l

F(ai,J k)ll(k)
tl

n

HO(i,j) = _ A(_)F(k,i,J )
a x k= 1 ax

for n state variables and m inputs.

B-28

c. State Equal ion

x ° = f(x°,u°,t)
B-29

u°(t) and x°(O) are inputs.

d. Estimation Equation

A A A A A A A

A A A A A

P* = KItP , K = p HTR - 1
x x x

except for _b = 1 and ._ = 0 after first loop,

(B-30)
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A A A A A AAA

P* = KHP + p.HTK - KRK r

A

for @ = I and _ = 0 after first loop; P (0

For @ = 1 only:

A A A AA

Px_ = FPxa + FaP _- _KHP _

A A A

P_ = - q)K_ I-IPx _ , P_ ( 0 )

A A A

is an input.

A

P= O) =

is an ,nput

(B-31)

(B-32)

e. Backward Sensitivity Equations

=2 = (H; - , x(r) = <(r) (B-33)

-A = fl_ , N (T) = 0

1
_p = _ Iio + f2rp + p f o _ p,

x 2 xx X X X X

p, p o -H° K K == x f : +* 2

P (T) = _o (T)
xx

(H o -1 f2 K +

except that

= o _ft° K +P*_ P_f_ + 2 xf°K + 5 x_ " -2 KTH°_K

for _b : 1, _ : 0, and cp= 1 after first loop.

1 H ° + F rP + PxFa - P* , Pa (T)= --

=c_ _fu °K + - H ,
,2 u

K_ = 2(H o )-1 f + _ H O

1
Pa (T) = 0

( 1)p. r o o K

(B-34)

(B-35)

(B-36)

(B-37)
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For _ = 1, _ = 0 and _ = 1 after first loop only:

. A

: (so _ o , ofuK)rp + -fi (f, - KH)

p o 1 Ho 1 KrH_OK , _x(T ) 0x 2 x_ 2

-- 0

"-- o o + P. fa-P_a = (fx - f.K)rp_a

1 H° 1 KTH_)Ka , .ap fo + _ - _ P (T) = 0
" 2 _u 2

(B-38)

(B-39)

For a[1 cases

A A A A

-J = tr (P Q + P_P + 2_AP ) + 9 tr (2P:_P _ + P_*_ +

AA A A A A

A = (KB - P HT)K T B = _pr HTK r
X _ X_

for _ = 1, _ = O, _ = 1 and T = 1

A : 0 , B =

I

A

- Pa Far

for @ : 1, _ : O, m = 1 and T : 0 ;

A = B = 0

J

(B-40)

otherwise.

f. Forward Sensitivity Equations

For 'y : O, _ : O, S a = P_ ; for T = O, _ : 1, S a = O; for T = 1

A

0 _ : (f> - cOKH)O_ + Fat# _ , 0._(0) = 0 (B-41)

A

()<_ : -cO_pK<_HO<_ _<_(0) = I (B-42)
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A __ h

S = 8r [P* - HrKTp_ - (ttrI,;r-_)r]8

A A __

+ Or (P _ - HTKrp _)O + 8r(p - HrKrp _)r8
X CL _ _ X_

T*+ O_P=O , S_(0) = 0 (B-43

g. Forward Adjoint Equations

x , x(0) = 0 (B-44
3k

where H is given in Eq. (III-34); for the linear problem this reduced to

x = (F- GK)x + x*

q tl

x *(i) = g 2 -_FF{i'J'k}I-'(J'k),_= - F(i'J'k)au (/_r_x + K_['_ )(k'j)] (B-45
j=l k=l

V
J¢

A
T OT: -o+ :&+ Ls °T + s_<_+rLs<<

/'_ -- A i

-f°K(V + P + c,o(1- _)N] - IV + P., + q)(1 - _)Vx]T(fo° K)T

A ,t
fo + x¢_ + -- -- + x_ + --_u,_[Fa x pT cp(1 _)_] [V pT q_(1 _)'_a,,]T(f°Ka) r

A

v (o) = -Px (O)

h

:_:, = r_xS2_+r_io_- (_ +v_)(:%:

-2Ilia.+ Pax + cO(1 - ¢)Va P f°(H°u)-l]f ° + cO(1 - ¢)V_ KTf 2

(B-46)

?_. (o) = o (B-47)

A

= 0 Na(0) = -Pa (0) (B-48)
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For q0 = 1, _: = 0 only

"_ -- A --

r rx(fo _ f K)r + rio _ _)_ + F_r x _ a • F(O) = 0 (B-49)

F x = [. (fo _ fOK)T _ B , F (0) = o (B-50)

To update u ° it is necessary to compute H ;

of H involving the above quantities is
tl

for the linear case a portion

1
u + gT- R-lu * , (_ _' = - I -al )

2

n q

u*(') = Z Z [PiCkax + P I_ + _o(i - _)P#U_r,](j'k)F(/'k'i)x (B-52)
1=1 k=l

For _:.= 0, q0 = 1 a new value of K is computed by use of HK; for the linear

case this yields

Kr _ (1 - det B)K r+ (detR) G + (Px + I_ + _:x + ivr)-I F' (P - P_)(7,

h Backward Adjoint Equations

For 'y = 1, q) = 1 only:

A A A A #

-I'_ 7(f ° - K/t) + (t.o_,- Kft)_', + P*

A _ _A A

-ttrgrp - Prgll , I' (T) 0 (B-54

A A A A A

-r rr_' + r _(r- Kn) + v*r _),_'• _ ,_KII , l _ (T) = 0

(B-55

In computation of H and H the following terms arise in the linear

p rob 1em

u*(i)
n q A A A A

j=l k=l

k*(i) ___ )v,(i) _

A A A A
n q

Z Z (I' P _, + p'r,_l,o){p,,k)l,,_j,k,,)_,,,
j =1 k=l

(B-5O
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A

A new value of K is computed by use of H A for the linear case this yields
K

A AA A A

K _ (1 - det B)K + (det B){P x + (Px + Px

A fl A -- A

[r[Pr + Fx_Pr,_ - F r(P, + F r)]}NrB-x (B-57

For all cases:

-_ = H • _(T) = _°(T) ; (B-58
x _ x

for the linear problem this reduces to

-L = FrL + 2Q(x - x + 2L* (_) (B-59

A new value of u ° is found from H ; in the linear problem this value is

u ° <--(1 det B)u - (det B) B-I[GTX + CPTu*] +
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APPENDIX C

PROOF OF SEPARATION OF PLANT AND MEASUREMENT

CONTROL FOR LINEAR CASE

This appendix presents the proof that the plant control and measure-

ment control can be optimized separately for the special case given in

the text. Since the plant and measurement subsystem given by Eqs. (V-!6)

and (V-17) are linear in the state with additive Gaussian disturbances

and measurement noise, the estimation described by Eq. (V-12) reduces to

the Kalman filter, which is given in Eqs. (V-22) and (V-23). The deri-

vation of the Kalman filter will not be repeated here; it is only neces-

sary to note that

A

At% = (^Xk/k,Pk/k) (C-l)

In the derivation the following lemma is needed:

m

E[xrQx] = xTQx + tr [PQ] , (C-2)

where

m

x = E(x)

-P = E[(x - x)(x - x) r]

and

tr [AB] = tr [BA] (C-3)

This lemma may be easily proved by writing the matrix operations in terms

of summations.

Use of Eqs. (V-16), and (V-18), and (C-2) yields

E T
{XN+IPN+lXN+I/X N }

"N

(FNX N + GNuP)TpN+ 1

h

(FNX N + GNUP ) + tr [PN+IQN ] (C-4)
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Application of the lemma a second time and using Eqs. (V-14) and (V-19)

gives

A A T

][N(_AI,yN ) = min _XN/NQNXN/N + UNRNU N
, p

u N

A p)T A p
+ (FNXN/N + GNUN PN+I (FNXN/N + GNUN) ]

A A

+ tr [(FTNPN+IF N + QN)PN/N + PN+IQN ]

A A
A T A

XN/NPNXN/N + tr [(P;+l + PN)PN/N - PN+IQN ]

where PN+* 1 and PN are given by Eq. (V-21) , and tile minimization is

performed by completion of squares.

Substitution of Eq. (V-19) into Eq. (V-13) yields

(C-5)

AT BkUk

A

+ l_(_) + tr [Pk/kOk]

k = 0_ . • ° N- 1 (('-0)

Based upon tile above form it s assumed that

Ik+l(l%+l,Yk+l)
A T A

Xk+l/k+lPk+lXk+l/k+l

A

+ tr [Pk+lPk+l/k+l ]

k

+ l_+l(Yk+l,Pk+l/k+l + bt+ 1 , (C-7)

P
where bk+ 1 is independent of u k and u_.

A

E{AXk+llk+l/AXklk,Pk/k } =

From Eq. (C-l)

Fkx A + G k P
k/k Uk

((:-8)
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Furt, hermore,

E{[Zk+ 1 - Hi+l(Fkxk/k

p T
A + CkUi)] }[Zk+ t - Hk+l(FkXk/k

= E{[Vk+ 1 + Hk+l(hXk+l - FkXk/k

A + Ok._)lr)Irk+ 1 + Hk+I(Xk+I - FkXk/k

A

= Rk+ 1 + Hk+l(FkPk/kF r + Ok)Hr+l
(C-9)

Hence from Eqs. (V-23) and (C-2)

A

A T A A k}
E{Xk+l/k+lPk+lxk+l/k+l/Xk/_'Pi/

= (Fk_k/k ÷ Ck._)rpk÷l(Fkxk/k

A A A
H T )Krk ]+ tr [Pk+lKk+l(Rk+l +Hk+lPk+l/k k+l +] (C- 10)

But from Eqs. (C-l), (V-23), (C-3), and (V-21),

h
A

tr [Pk+lKk+l(Bk+l + Hk+lPk+l/kHrk+l)Krk+l ]

tr [Pk+lPk+l/kftrk+lKr+ l]

A A

tr [Pk+l(F_Pk/kFrk + Q_ - Pk+l/k+l )]

A A

(Qk - Pk )1tr _(P_+I ÷ Pk - Qk)Pk/k ÷ P_+I +l/k+l
(C-11)
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Use of Eqs. (C-8), (C-10), and (C-11) in Eq. (V-14) results in

Ik (gk,Yk) =
rA T _ A pT

min _xk/ktgkxk/k + uk Bk_
P M

Uk,Uk+ 1

A

+ l_+l(UkM+l ) + tr [Pk/kQk ]

p r A + Gku_ )+ (FkAxk/i + Gk%) Pk+l(Fixk/k

A A A

+ P* - + P_+I(Qk - Pk+l/_ 1 )]tr [( k+l + Pk Qk)P_/k +

A A

+ tr [Pk+lPk+l/_+l] + I_+l(yk+l,Pk+l/k+ 1) + bk+ 1}

_Ar _ A pr + ok._)r= min LXk/kMkXk/k + Uk Bkut2k + (FkxAk/k

A

A + Gku_)] + tr [PkPk/h]• Pk+l(Fkxk/k

'A

{/k(u_) + tr [P_+iPk/k]

A A

+ I_+l(y_,+l,Pk+l/k+l)} + bk+ 1 + tr [Pk+lQk] (C-12)

The minimization over u_ can be performed by completion of squares to

yield Eq. (V-21) for Pk" It is also seen from Eqs. (C-6) and (C-12)

that if

A

b k = tr [Pk+lQk] + bk+ 1 k = 0, ..., N - 1

A

bs = tr [PN+tQN]
(c-13)

then

A

I_(yk,Pk/k) =

A

A

+ I_+l(Yk+l,Pk+l/i¢+ 1 )) k=0 ..... N-1

A A
(C-14)
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M must be chosen so YN e _"where u N

Now from Eq. (C-15)

J = min
M

u0e_M

A

[/0(_b0,y 0) + ;0M(4)] : xTP0x- 0 + tr [PoPo/_I ]

A

+ b o + min [IUo(Yo,Po/o ) + l_(u_)] (C-15)

Equation (C-14) and the last term of Eq. (C-15) are the dynamic

programming equations for the nonlinear, deterministic control problem:

Minimize

N
M

z {Z_(uk
k=O

A

+ tr [P_+tpk/k]} (C-16)

A

subject to the recursion equations for Pk/k and Yk, and the constraints

u M e _h v and YN e
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